
Data on the Heap
Next, lets add support for

Data Structures

In the process of doing so, we will learn about

Heap Allocation

Run-time Tags

Creating Heap Data Structures
We have already support for two primitive data types

data Ty

 = TNumber -- e.g. 0,1,2,3,...

 | TBoolean -- e.g. true, false

we could add several more of course, e.g.

Char

Double or Float

etc. (you should do it!)

However, for all of those, the same principle applies, more or less

As long as the data fits into a single word (8-bytes)

Instead, lets learn how to make unbounded data structures

Lists

Trees

…

which require us to put data on the heap

not just the stack that we’ve used so far.

Stack vs. Heap

Pairs
While our goal is to get to lists and trees, the journey of a thousand miles begins with a

single step…

So! we will begin with the humble pair.

Pairs: Semantics (Behavior)
First, lets ponder what exactly we’re trying to achieve.

We want to enrich our language with two new constructs:

Constructing pairs, with a new expression of the form (e0, e1) where e0 and e1

are expressions.

Accessing pairs, with new expressions of the form e[0] and e[1] which evaluate

to the first and second element of the tuple e respectively.

For example,

let t = (2, 3) in

 t[0] + t[1]

should evaluate to 5 .

Strategy
Next, lets informally develop a strategy for extending our language with pairs,

implementing the above semantics. We need to work out strategies for:

1. Representing pairs in the machine’s memory,

2. Constructing pairs (i.e. implementing (e0, e1) in assembly),

3. Accessing pairs (i.e. implementing e[0] and e[1] in assembly).

1. Representation
Recall that we represent all values:

Number like 0 , 1 , 2 …

Boolean like true , false

as a single word either

8 bytes on the stack, or

a single register rax , rcx etc.

EXERCISE
What kinds of problems do you think might arise if we represent a pair (2, 3) on the

stack as:

| |

| 3 |

| 2 |

| ... |

QUIZ
How many words would we need to store the tuple

(3, (4, 5))

1. 1 word

2. 2 words

3. 3 words

4. 4 words

5. 5 words

Pointers

Every problem in computing can be solved by adding a level of indirection.

We will represent a pair by a pointer to a block of two adjacent words of memory.

Pairs on the heap

The above shows how the pair (2, (3, (4, 5))) and its sub-pairs can be stored in the

heap using pointers.

(4, 5) is stored by adjacent words storing

4 and

5

(3, (4, 5)) is stored by adjacent words storing

3 and

a pointer to a heap location storing (4, 5)

(2, (3, (4, 5))) is stored by adjacent words storing

2 and

a pointer to a heap location storing (3, (4, 5)) .

A Problem: Numbers vs. Pointers?
How will we tell the di!erence between numbers and pointers?

That is, how can we tell the di!erence between

1. the number 5 and

2. a pointer to a block of memory (with address 5)?

Each of the above corresponds to a di!erent tuple

1. (4, 5) or

2. (4, (...)) .

so its pretty crucial that we have a way of knowing which value it is.

Tagging Pointers
As you might have guessed, we can extend our tagging mechanism to account for

pointers.

Type LSB

number xx0

boolean 111

pointer 001

That is, for

number the last bit will be 0 (as before),

boolean the last 3 bits will be 111 (as before), and

pointer the last 3 bits will be 001 .

(We have 3-bits worth for tags, so have wiggle room for other primitive types.)

Address Alignment
As we have a 3 bit tag

leaving 64 - 3 = 61 bits for the actual address

So actual addresses, written in binary, omitting trailing zeros, are of the form

Binary Decimal

0b00000000 0

0b00001000 8

0b00010000 16

0b00011000 24

0b00100000 32

…

That is, the addresses are 8-byte aligned.

Which is great because at each address, we have a pair, i.e. a 2-word = 16-byte block, so

the next allocated address will also fall on an 8-byte boundary.

But … what if we had 3-tuples? or 5-tuples? …

2. Construction
Next, lets look at how to implement pair construction that is, generate the assembly for

expressions like:

(e1, e2)

To construct a pair (e1, e2) we

1. Allocate a new 2-word block, and getting the starting address at rax ,

2. Copy the value of e1 (resp. e2) into [rax] (resp. [rax + 8]).

3. Tag the last bit of rax with 1 .

The resulting eax is the value of the pair

The last step ensures that the value carries the proper tag.

ANF will ensure that e1 and e2 are immediate expressions

will make the second step above straightforward.

EXERCISE How will we do ANF conversion for (e1, e2) ?

Allocating Addresses
Lets use a global register r15 to maintain the address of the next free block on the heap.

Every time we need a new block, we will:

1. Copy the current r15 into rax

Set the last bit to 1 to ensure proper tagging.

rax will be used to fill in the values

2. Increment the value of r15 by 16

Thus allocating 8 bytes (= 2 words) at the address in rax

Note that addresses stay 8-byte aligned (last 3 bits = 0) if we

Start our blocks at an 8-byte boundary, and

Allocate 16 bytes at a time,

NOTE: Your assignment will have blocks of varying sizes

You will have to maintain the 8-byte alignment by padding

Example: Allocation
In the figure below, we have

a source program on the left,

the ANF equivalent next to it.

Example of Pairs

The figure below shows the how the heap and r15 evolve at points 1, 2 and 3:

Allocating Pairs on the Heap

QUIZ
In the ANF version, p is the second (local) variable stored in the stack frame. What value

gets moved into the second stack slot when evaluating the above program?

1. 0x3

2. (3, (4, 5))

3. 0x11

4. 0x9

5. 0x10

cse131 Canvas Piazza Contact Grades Lectures Assignments Links

OSEGGis updue523

25 on stache
25 notonstack

ur code lines

stackframes

I tuples

me
youconst

l
Destruct

ay egg
e ezez ly
ele

DO 5

É
64bits
8 bytes

or
let t 2,030 NEEDsize at compile

time

o T.fi y7wnyisth'sdifficult

at b do I need
size

45,1196337 Hqgntoe.netRFgrN tuples

FAILE
3,4 JA

2 3,4 1,123,4

4 E
4,1

O

mtiisHe

É

letter into
repr tuple

do youstore

A startpointer
ONLY

IN B santpointer
END POINTER

K START t NUMBLOCKS

D Start SIZE INTURI

Vi Vi

ÉÉ

for n tuples
2 1 8

i

n
Tt o

16 with tag sett I

x 0 10
0 11

file:///Users/rjhala/teaching/131-sp22/docs/lectures/05-cobra.md/#option-2-use-a-tag-bit
file:///Users/rjhala/teaching/131-sp22/docs/lectures/05-cobra.md/#option-2-use-a-tag-bit
file:///Users/rjhala/teaching/131-sp22/docs/lectures/04-boa.md/#idea-immediate-expressions
https://ucsd-cse131.github.io/sp22

3. Accessing
Finally, to access the elements of a pair

Lets compile e[0] to get the first or e[1] to get the second element

1. Check that immediate value e is a pointer

2. Load e into rcx

3. Remove the tag bit from rcx

4. Copy the value in [rcx] (resp. [rcx + 8]) into rcx .

Example: Access
Here is a snapshot of the heap after the pair(s) are allocated.

Allocating Pairs on the Heap

Lets work out how the values corresponding to x , y and z in the example above get

stored on the stack frame in the course of evaluation.

Variable Hex Value Value

anf0 0x001 ptr 0

p 0x011 ptr 16

x 0x006 num 3

anf1 0x001 ptr 0

y 0x008 num 4

z 0x00A num 5

anf2 0x00E num 7

result 0x018 num 12

Plan
Pretty pictures are well and good, time to build stu!!

As usual, lets continue with our recipe:

1. Run-time

2. Types

3. Transforms

We’ve already built up intuition of the strategy for implementing tuples.

Next, lets look at how to implement each of the above.

Run-Time
We need to extend the run-time (c-bits/main.c) in two ways.

1. Allocate a chunk of space on the heap and pass in start address to our_code .

2. Print pairs properly.

Allocation
The first step is quite easy we can use calloc as follows:

int main(int argc, char** argv) {

 int* HEAP = calloc(HEAP_SIZE, sizeof (int));

 long result = our_code_starts_here(HEAP);

 print(result);

 return 0;

}

The above code,

1. Allocates a big block of contiguous memory (starting at HEAP), and

2. Passes this address in to our_code .

Now, our_code needs to, at the beginning start with instructions that

copy the parameter (in rdi) into global pointer (r15)

and then bump it up at each allocation.

Printing
To print pairs, we must recursively traverse pointers

until we hit number or boolean .

We can check if a value is a pair by looking at its last 3 bits:

int isPair(int p) {

 return (p & 0x00000007) == 0x00000001;

}

We can use the above test to recursively print (word)-values:

void print(long val) {

 if(val & 0x1 == 0) { // val is a number

 printf("%ld", val >> 1);

 }

 else if(val == CONST_TRUE) { // val is true

 printf("true");

 }

 else if(val == CONST_FALSE) { // val is false

 printf("false");

 }

 else if(val & 7 == 1) {

 long* valp = (long *) (val - 1); // extract address

 printf("(");

 print(*valp); // print first element

 printf(", ");

 print(*(valp + 1)); // print second element

 printf(")");

 }

 else {

 printf("Unknown value: %#010x", val);

 }

}

Types
Next, lets move into our compiler, and see how the core types need to be extended.

Source
We need to extend the source Expr with support for tuples

data Expr a

 = ...

 | Pair (Expr a) (Expr a) a -- ^ construct a pair

 | GetItem (Expr a) Field a -- ^ access a pair's element

In the above, Field is

data Field

 = First -- ^ access first element of pair

 | Second -- ^ access second element of pair

NOTE: Your assignment will generalize pairs to n-ary tuples using

Tuple [Expr a] representing (e1,...,en)

GetItem (Expr a) (Expr a) representing e1[e2]

Dynamic Types
Let us extend our dynamic types Ty see to include pairs:

data Ty = TNumber | TBoolean | TPair

Assembly
The assembly Instruction are changed minimally; we just need access to r15 which

will hold the value of the next available memory block:

data Register

 = ...

 | R15

Transforms
Our code must take care of three things:

1. Initialize r15 to allow heap allocation,

2. Construct pairs,

3. Access pairs.

The latter two will be pointed out as cases in anf and compileEnv

Tuple

GetItem

Initialize
We need to initialize r15 with the start position of the heap

passed in as rdi by the run-time.

How shall we get a hold of this position?

To do so, our_code starts o! with a prelude

prelude :: [Instruction]

prelude =

 [IMov (Reg R15) (Reg RDI) -- copy param (HEAP) off rdi

]

Is that it?

QUIZ

Is r15 8-byte aligned?

A. Yes

B. No

Ensuring alignment
prelude :: [Instruction]

prelude =

 [IMov (Reg RAX) (HexConst 0xFFFFFFFF) -- setup regMask

 , IShl (Reg RAX) (Const 32)

 , IOr (Reg RAX) (HexConst 0xFFFFFFF8)

 , IMov (Reg R15) (Reg RDI) -- copy param (HEAP) off rdi

 , IAdd (Reg R15) (Const 8) -- add 8 and mask 3 bits to

ensure

 , IAnd (Reg R15) (Reg RAX) -- 8-byte aligned

]

1. Copy the value o! the (parameter) stack, and

2. Adjust the value to ensure the value is 8-byte aligned.

QUIZ
Why add 8 to r15 ? What would happen if we removed that operation?

1. r15 would not be 8-byte aligned?

2. r15 would point into the stack?

3. r15 would not point into the heap?

4. r15 would not have enough space to write 2 bytes?

Construct
To construct a pair (v1, v2) we directly implement the above strategy:

compileEnv env (Tuple v1 v2)

 = pairAlloc -- 1. allocate pair, resulting addr i

n `rax`

 ++ pairCopy First (immArg env v1) -- 2. copy first value into slots

 ++ pairCopy Second (immArg env v2) -- 3. copy second value into slot

 ++ setTag RAX TPair -- 3. set the tag-bits of `rax`

Lets look at each step in turn.

Allocate
To allocate, we just copy the current pointer r15 and increment by 16 bytes,

accounting for two 8-byte blocks for each element.

pairAlloc :: Asm

pairAlloc

 = [IMov (Reg RAX) (Reg R15) -- copy current "free address" `esi` int

o `eax`

 , IAdd (Reg RAX) (Const 16) -- increment `esi` by 8

]

Exercise How would you make this work for n -tuples?

Copy
We copy an Arg into a Field by

saving the Arg into a helper register rcx ,

copying rcx into the field’s slot on the heap.

pairCopy :: Field -> Arg -> Asm

pairCopy fld arg

 = [IMov (Reg RCX) arg

 , IMov (pairAddr fld) (Reg RCX)

]

Recall, the field’s slot is either [rax] or [rax + 8] depending on whether the field is

First or Second .

QUIZ
What shall we fill in for _1 and _2 ?

pairAddr :: Field -> Arg

pairAddr First = RegOffset ?1 RAX

pairAddr Second = RegOffset ?2 RAX

A. 0 and 1

B. 0 and -1

C. 1 and 2

D. -1 and -2

E. huh?

Tag
Finally, we set the tag bits of rax by using typeTag TPair which is defined

setTag :: Register -> Asm

setTag r = [IAdd (Reg r) (HexConst 0x1)]

Access
To access tuples, lets update compileEnv with the strategy above:

compileExpr env (GetItem e fld)

 = assertType env e TPair -- 1. check that e is a (pair) poi

nter

 ++ [IMov (Reg RAX) (immArg env e)] -- 2. load pointer into eax

 ++ unsetTag RAX -- 3. remove tag bit to get addres

s

 ++ [IMov (Reg RAX) (pairAddr fld)] -- 4. copy value from resp. slot t

o eax

we remove the tag bits by doing the opposite of setTag namely:

Eti
ele
V Vi
Fax checkty v tuple

mov rax rex 8 checkIndexV V2

O Ifj ax rex 8

pts0 11
a ok

cycles in tuples
canyouhave

ant
Yes D
a No

wa
e o ectCase
Tesh

allot
r's printtuples
Tuple

erer eco elf

Libraneof lists trees ele

I
allocate print
heap

1 2,3

initalloc
alloc esea Pair e ez
access eco Gettlere f

ourtaae.isitfere

alignalloc Yid HEE
mor r15 rdi
raxerdi

m out

D

Vi Vi Fyi

eco e

assertTy E e TTuple

H rax hasvalued e

stripouttagonRAY
rex Crax
raxerex

file:///Users/rjhala/teaching/131-sp22/docs/lectures/05-cobra.md/#types
file:///Users/rjhala/teaching/131-sp22/docs/lectures/07-egg-eater.md/#2-construction
file:///Users/rjhala/teaching/131-sp22/docs/lectures/07-egg-eater.html#3-accessing

unsetTag :: Register -> Asm

unsetTag r = ISub (Reg RAX) (HexConst 0x1)

N-ary Tuples
Thats it! Lets take our compiler out for a spin, by using it to write some interesting

programs!

First, lets see how to generalize pairs to allow for

triples (e1,e2,e3)

quadruples (e1,e2,e3,e4)

pentuples (e1,e2,e3,e4,e5)

and so on.

We just need a library of functions in our new egg language to

Construct such tuples, and

Access their fields.

Constructing Tuples
We can write a small set of functions to construct tuples (up to some given size):

def tup3(x1, x2, x3):

 (x1, (x2, x3))

def tup4(x1, x2, x3, x4):

 (x1, (x2, (x3, x4)))

def tup5(x1, x2, x3, x4, x5):

 (x1, (x2, (x3, (x4, x5))))

Accessing Tuples
We can write a single function to access tuples of any size.

So the below code

let yuple = (10, (20, (30, (40, (50, false))))) in

get(yuple, 0) = 10

get(yuple, 1) = 20

get(yuple, 2) = 30

get(yuple, 3) = 40

get(yuple, 4) = 50

def tup3(x1, x2, x3):

 (x1, (x2, x3))

def tup5(x1, x2, x3, x4, x5):

 (x1, (x2, (x3, (x4, x5))))

let t = tup5(1, 2, 3, 4, 5) in

 , x0 = print(get(t, 0))

 , x1 = print(get(t, 1))

 , x2 = print(get(t, 2))

 , x3 = print(get(t, 3))

 , x4 = print(get(t, 4))

in

 99

should print out:

0

1

2

3

4

99

How shall we write it?

def get(t, i):

 TODO-IN-CLASS

QUIZ
Using the above “library” we can write code like:

let quad = tup4(1, 2, 3, 4) in

 get(quad, 0) + get(quad, 1) + get(quad, 2) + get(quad, 3)

What will be the result of compiling the above?

1. Compile error

2. Segmentation fault

3. Other run-time error

4. 4

5. 10

QUIZ
Using the above “library” we can write code like:

def get(t, i):

 if i == 0:

 t[0]

 else:

 get(t[1],i-1)

def tup3(x1, x2, x3):

 (x1, (x2, (x3, false)))

let quad = tup3(1, 2, 3) in

 get(quad, 0) + get(quad, 1) + get(quad, 2) + get(quad, 3)

What will be the result of compiling the above?

1. Compile error

2. Segmentation fault

3. Other run-time error

4. 4

5. 10

Lists
Once we have pairs, we can start encoding unbounded lists.

To build a list, we need two constructor functions:

def empty():

 false

def cons(h, t):

 (h, t)

``

We can now encode lists as:

```python

cons(1, cons(2, cons(3, cons(4, empty()))))

Access
To access a list, we need to know

1. Whether the list isEmpty , and

2. A way to access the head  and the tail  of a non-empty list.

def isEmpty(l):

  l == empty()

def head(l):

  l[0]

def tail(l):

  l[1]

Examples
We can now write various functions that build and operate on lists, for example, a

function to generate the list of numbers between i  and j

def range(i, j):

  if (i < j):

    cons(i, range(i+1, j))

  else:

    empty()

range(1, 5)

which should produce the result

(1,(2,(3,(4,false))))

and a function to sum up the elements of a list:

def sum(xs):

  if (isEmpty(xs)):

    0

  else:

    head(xs) + sum(tail(xs))

sum(range(1, 5))

which should produce the result 10 .

Recap
We have a pretty serious language now, with:

Data Structures

which are implemented using

Heap Allocation

Run-time Tags

which required a bunch of small but subtle changes in the

runtime and compiler

In your assignment, you will add native support for n-ary tuples, letting the programmer

write code like:

(e1, e2, e3, ..., en)  # constructing tuples of arbitrary arity

e1[e2]                 # allowing expressions to be used as fields

Next, we’ll see how to

use the “tuple” mechanism to implement higher-order functions and

reclaim unused memory via garbage collection.

   

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll, template by Armin Ronacher,

Please suggest fixes here.

!" !# !$ %!&

map
filter
fold

https://ucsd-cse131.github.io/sp22/feed.xml
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/106612421534244742464
https://github.com/ucsd-cse131/sp22
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
http://github.com/ucsd-cse131/sp21

