
Functions
Next, we’ll build diamondback which adds support for

User-Defined Functions

In the process of doing so, we will learn about

Static Checking

Calling Conventions

Tail Recursion

Plan
1. Defining Functions

2. Checking Functions

3. Compiling Functions

4. Compiling Tail Calls

1. Defining Functions
First, lets add functions to our language.

As always, lets look at some examples.

Example: Increment
For example, a function that increments its input:

def incr(x):

  x + 1

incr(10)

We have a function definition followed by a single “main” expression, which is

evaluated to yield the program’s result 11 .

Example: Factorial
Here’s a somewhat more interesting example:

def fac(n):

  let t = print(n) in

  if (n < 1):

    1

  else:

    n * fac(n - 1)

fac(5)

This program should produce the result

5

4

3

2

1

0

120

Suppose we modify the above to produce intermediate results:

def fac(n):

  let t   = print(n)

    , res = if (n < 1):

              1

            else:

              n * fac(n - 1)

  in

    print(res)

fac(5)

we should now get:
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1

1
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6
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120

Example: Mutually Recursive Functions
For this language, the function definitions are global

any function can call any other function.

This lets us write mutually recursive functions like:

def even(n):

  if (n == 0):

    true

  else:

    odd(n - 1)

def odd(n):

  if (n == 0):

    false

  else:

    even(n - 1)

let t0 = print(even(0)),

    t1 = print(even(1)),

    t2 = print(even(2)),

    t3 = print(even(3))

in

    0

QUIZ What should be the result of executing the above?

1. false true false true 0

2. true false true false 0

3. false false false false 0

4. true true true true 0

Types
Lets add some new types to represent programs.

Bindings
Lets create a special type that represents places where variables are bound,

data Bind a = Bind Id a

A Bind  is an Id  decorated with an a

to save extra metadata like tags or source positions

to make it easy to report errors.

We will use Bind  at two places:

1. Let-bindings,

2. Function parameters.

It will be helpful to have a function to extract the Id  corresponding to a Bind

bindId :: Bind a -> Id

bindId (Bind x _) = x

Programs
A program is a list of declarations and main expression.

data Program a = Prog

  { pDecls :: [Decl a]    -- ^ function declarations

  , pBody  :: !(Expr a)   -- ^ "main" expression

  }

Declarations
Each function lives is its own declaration,

data Decl a = Decl

  { fName  :: (Bind a)    -- ^ name

  , fArgs  :: [Bind a]    -- ^ parameters

  , fBody  :: (Expr a)    -- ^ body expression

  , fLabel :: a           -- ^ metadata/tag

  }

Expressions
Finally, lets add function application (calls) to the source expressions:

data Expr a

  = ...

  | Let     (Bind a) (Expr a)  (Expr a) a

  | App     Id       [Expr a]           a

An application or call comprises

an Id , the name of the function being called,

a list of expressions corresponding to the parameters, and

a metadata/tag value of type a .

(Note: that we are now using Bind  instead of plain Id  at a Let .)

Examples Revisited
Lets see how the examples above are represented:

>>> parseFile "tests/input/incr.diamond"

Prog {pDecls = [Decl { fName = Bind "incr" ()

                     , fArgs = [Bind "n" ()]

                     , fBody = Prim2 Plus (Id "n" ()) (Number 1 ()) 

()

                     , fLabel = ()}

               ]

     , pBody = App "incr" [Number 5 ()] ()

     }

>>> parseFile "tests/input/fac.diamond"

Prog { pDecls = [ Decl {fName = Bind "fac" ()

                , fArgs = [Bind "n" ()]

                , fBody = Let (Bind "t" ()) (Prim1 Print (Id "n" ()) 

())

                          (If (Prim2 Less (Id "n" ()) (Number 1 ()) 

())
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())

                             (Number 1 ())

                             (Prim2 Times (Id "n" ())

                                (App "fac" [Prim2 Minus (Id "n" ()) 

(Number 1 ()) ()] ())

                                ()) ()) ()

                , fLabel = ()}

                ]

     , pBody  = App "fac" [Number 5 ()] ()

     }

2. Static Checking
Next, we will look at an increasingly important aspect of compilation, pointing out

bugs in the code at compile time

Called Static Checking because we do this without (i.e. before) compiling and

running the code.

There is a huge spectrum of checks possible:

Code Linting jslint, hlint

Static Typing

Static Analysis

Contract Checking

Dependent or Refinement Typing

Increasingly, this is the most important phase of a compiler, and modern compiler

engineering is built around making these checks lightning fast. For more, see this

interview of Anders Hejlsberg the architect of the C# and TypeScript compilers.

Static Well-formedness Checking
We will look at code linting and, later in the quarter, type systems in 131.

For the former, suppose you tried to compile:

def fac(n):

  let t = print(n) in

  if (n < 1):

    1

  else:

    n * fac(m - 1)

fact(5) + fac(3, 4)

We would like compilation to fail, not silently, but with useful messages:

$ make tests/output/err-fac.result

Errors found!

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

         6|      n * fac(m - 1)

                         ^

tests/input/err-fac.diamond:8:1-9: Function 'fact' is not defined

         8|  fact(5) + fac(3, 4)      

             ^^^^^^^^

tests/input/err-fac.diamond:(8:11)-(9:1): Wrong arity of arguments a

t call of fac

         8|  fact(5) + fac(3, 4)

                       ^^^^^^^^^

We get multiple errors:

1. The variable m  is not defined,

2. The function fact  is not defined,

3. The call fac  has the wrong number of arguments.

Next, lets see how to update the architecture of our compiler to support these and

other kinds of errors.

Types: An Error Reporting API
An error message type:

data UserError = Error

  { eMsg  :: !Text          -- ^ error message

  , eSpan :: !SourceSpan    -- ^ source position

  }

  deriving (Show, Typeable)

We make it an exception (that can be thrown):

instance Exception [UserError]

We can create errors with:

mkError :: Text -> SourceSpan -> Error

mkError msg l = Error msg l

We can throw errors with:

abort :: UserError -> a

abort e = throw [e]

We display errors with:

renderErrors :: [UserError] -> IO Text

which takes something like:

Error

  "Unbound variable 'm'"

  { file      = "tests/input/err-fac"

  , startLine = 8

  , startCol  = 1

  , endLine   = 8

  , endCol    = 9

  }

and produces a contextual message (that requires reading the source file),

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

         6|      n * fac(m - 1)

                         ^

We can put it all together by

-- bin/Main.hs

main :: IO ()

main = runCompiler `catch` esHandle

esHandle :: [UserError] -> IO ()

esHandle es = renderErrors es >>= hPutStrLn stderr >> exitFailure

Which runs the compiler and if any UserError  are thrown, catch -es and renders

the result.

Transforms
Next, lets insert a checker  phase into our pipeline:

Compiler Pipeline with Checking Phase

In the above, we have defined the types:

type BareP   = Program SourceSpan        -- ^ source position metada

ta

type AnfP    = Program SourceSpan        -- ^ sub-exprs in ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ sub-exprs have unique 

tag

Catching Multiple Errors
Its rather irritating to get errors one-by-one.

To make using a language and compiler pleasant, lets return as many errors as

possible in each run.

We will implement this by writing the functions

wellFormed  :: BareProgram -> [UserError]

which will recursively traverse the entire program, declaration and expression and

return the list of all errors.

If this list is empty, we just return the source unchanged,

Otherwise, we throw  the list of found errors (and exit.)

Thus, our check  function looks like this:

check :: BareProgram -> BareProgram

check p = case wellFormed p of

            [] -> p

            es -> throw es

Well-formed Programs, Declarations and
Expressions
The bulk of the work is done by three functions

-- Check a whole program

wellFormed  ::                  BareProgram -> [UserError]

-- Check a single declaration

wellFormedD :: FunEnv ->        BareDecl    -> [UserError]

-- Check a single expression 

wellFormedE :: FunEnv -> Env -> Bare        -> [UserError]

Well-formed Programs
To check the whole program

wellFormed :: BareProgram -> [UserError]

wellFormed (Prog ds e)

  =  concat [wellFormedD fEnv d | d <- ds]

  ++ wellFormedE fEnv emptyEnv e

  where

    fEnv = funEnv ds

funEnv :: [Decl] -> FunEnv

funEnv ds = fromListEnv [(bindId f, length xs)

                          | Decl f xs _ _ <- ds]

This function,

1. Creates FunEnv , a map from function-names to the function-arity (number of

params),

2. Computes the errors for each declaration (given functions in fEnv ),

3. Concatenates the resulting lists of errors.

QUIZ
Which function(s) would we have to modify to add large number errors (i.e. errors for

numeric literals that may cause overflow)?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1  and 2

5. 2  and 3

QUIZ
Which function(s) would we have to modify to add variable shadowing errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1  and 2

5. 2  and 3
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QUIZ
Which function(s) would we have to modify to add duplicate parameter errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1  and 2

5. 2  and 3

QUIZ
Which function(s) would we have to modify to add duplicate function errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1  and 2

5. 2  and 3

Traversals
Lets look at how we might check for two types of errors:

1. “unbound variables”

2. “undefined functions”

(In your assignment, you will look for many more.)

The helper function wellFormedD  creates an initial variable environment vEnv

containing the functions parameters, and uses that (and fEnv ) to walk over the

body-expressions.

wellFormedD :: FunEnv -> BareDecl -> [UserError]

wellFormedD fEnv (Decl _ xs e _) = wellFormedE fEnv vEnv e

  where

    vEnv                         = addsEnv xs emptyEnv

The helper function wellFormedE  starts with the input

vEnv0  which has the function parameters, and

fEnv  that has the defined functions,

and traverses the expression:

At each definition Let x e1 e2 , the variable x  is added to the environment

used to check e2 ,

At each use Id x  we check if x  is in vEnv  and if not, create a suitable

UserError

At each call App f es  we check if f  is in fEnv  and if not, create a suitable

UserError .

wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

wellFormedE fEnv vEnv0 e      = go vEnv0 e

  where

    gos vEnv es               = concatMap (go vEnv) es

    go _    (Boolean {})      = []

    go _    (Number  n     l) = []

    go vEnv (Id      x     l) = unboundVarErrors vEnv x l

    go vEnv (Prim1 _ e     _) = go  vEnv e

    go vEnv (Prim2 _ e1 e2 _) = gos vEnv [e1, e2]

    go vEnv (If   e1 e2 e3 _) = gos vEnv [e1, e2, e3]

    go vEnv (Let x e1 e2   _) = go vEnv e1

                             ++ go (addEnv x vEnv) e2

    go vEnv (App f es      l) = unboundFunErrors fEnv f l

                             ++ gos vEnv es

You should understand the above and be able to easily add extra error checks.

3. Compiling Functions

Compiler Pipeline for Functions

In the above, we have defined the types:

type BareP   = Program SourceSpan        -- ^ each sub-expression ha

s source position metadata

type AnfP    = Program SourceSpan        -- ^ each function body in 

ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ each sub-expression ha

s unique tag

Tagging

Compiler Pipeline ANF

The tag  phase simply recursively tags each function body and the main expression

ANF Conversion

Compiler Pipeline ANF

The normalize  phase (i.e. anf ) is recursively applied to each function body.

In addition to Prim2  operands, each call’s arguments should be transformed

into an immediate expression

Generalize the strategy for binary operators

from ( 2  arguments) to n -arguments.

Strategy
Now, lets look at compiling function definitions and calls.

Compiler Pipeline with Checking Phase

We need a co-ordinated strategy for definitions and calls.

Function Definitions

Each definition is compiled into a labeled block of Asm

That implements the body of the definitions.

(But what about the parameters)?

Function Calls

Each call of f(args)  will execute the block labeled f

(But what about the parameters)?

Strategy: The Stack

Stack Frames

We will use our old friend, the stack to

pass parameters

have local variables for called functions.

X86-64 Calling Convention
We are using the x86-64 calling convention, that ensures the following stack

layout:

Stack Layout

Suppose we have a function foo  defined as

def foo(x1,x2,...):

  e

When the function body starts executing

the first 6 parameters x1 , x2 , … x6  are at rdi , rsi , rdx , rcx , r8  and r9

the remaining x7 , x8  … are at [rbp + 8*2] , [rbp + 8*3] , …

When the function exits

the return value is in rax

Pesky detail on Stack Alignment
At both definition and call, you need to also respect the 16-Byte Stack Alignment

Invariant

Ensure rsp  is always a multiple of 16 .

i.e. pad to ensure an even number of arguments on stack

Strategy: Definitions
Thus to compile each definition

def foo(x1,x2,...):

  body 

we must

1. Setup Frame to allocate space for local variables by ensuring that rsp  and rbp

are properly managed

2. Copy parameters x1 , x2 ,… from the registers & stack

into stack-slots 1 , 2 ,… so we can access them in the body

3. Compile Body body  with initial Env  mapping parameters x1 => 1 , x2 => 2 ,

…

4. Teardown Frame to restore the caller’s rbp  and rsp  prior to ret urn.
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Strategy: Calls
As before we must ensure that the parameters actually live at the above address.

1. Push the parameter values into the registers & stack,

2. Call the appropriate function (using its label),

3. Pop the arguments o! the stack by incrementing rsp  appropriately.

Types
We already have most of the machinery needed to compile calls.

Lets just add a new kind of Label  for each user-defined function:

data Label

  = ...

  | DefFun Id

Implementation
Lets can refactor our compile  functions into:

-- Compile the whole program

compileProg :: AnfTagP -> Asm

-- Compile a single function declaration

compileDecl :: Bind -> [Bind] -> Expr -> Asm

-- Compile a single expression

compileExpr :: Env -> AnfTagE -> Asm

that respectively compile Program , Decl  and Expr .

Compiling Programs
To compile a Program  we compile

the main expression as Decl  with no parameters and

each function declaration

compileProg (Prog ds e) =

     compileDecl (Bind "" ()) [] e

  ++ concat [ compileDecl f xs e | (Decl f xs e _) <- ds ]

QUIZ
Does it matter whether we put the code for e  before ds ?

1. Yes

2. No

QUIZ
Does it matter what order we compile the ds  ?

1. Yes

2. No

Compiling Declarations
To compile a single Decl  we

1. Create a block starting with a label for the function’s name (so we know where

to call ),

2. Invoke compileBody  to fill in the assembly code for the body, using the initial

Env  obtained from the function’s formal parameters.

compileDecl :: Bind a -> [Bind a] -> AExp -> [Instruction]

compileDecl f xs body =

 -- 0. Label for start of function

    [ ILabel (DefFun (bindId f)) ]

 -- 1. Setup  stack frame RBP/RSP

 ++ funEntry n

 -- label the 'body' for tail-calls

 ++ [ ILabel (DefFunBody (bindId f)) ]

 -- 2. Copy parameters into stack slots

 ++ copyArgs xs

 -- 3. Execute 'body' with result in RAX

 ++ compileEnv initEnv body 

 -- 4. Teardown stack frame & return

 ++ funExit n 

  where

              -- space for params + locals

    n       = length xs + countVars body

    initEnv = paramsEnv xs

Setup and Tear Down Stack Frame
(As in cobra )

Setup frame

funEntry :: Int -> [Instruction]

funEntry n =

   [ IPush (Reg RBP)                       -- save caller's RBP

   , IMov  (Reg RBP) (Reg RSP)             -- set callee's RBP

   , ISub  (Reg RSP) (Const (argBytes n))  -- allocate n local-vars

   ]

Teardown frame

funExit :: Int -> [Instruction]

funExit n =

   [ IAdd (Reg RSP) (Const (argBytes n))    -- un-allocate n local-v

ars

   , IPop (Reg RBP)                         -- restore callee's RBP 

   , IRet                                   -- return to caller

   ] 

Copy Parameters into Frame
copyArgs xs  returns the instructions needed to copy the parameter values

From the combination of rdi , rsi , …

To this function’s frame, rdi -> [rbp - 8] , rsi -> [rbp - 16] ,…

copyArgs :: [a] -> Asm 

copyArgs xs    = copyRegArgs   rXs -- copy upto 6 register args

              ++ copyStackArgs sXs -- copy remaining stack args

  where

    (rXs, sXs) = splitAt 6 xs

-- Copy upto 6 args from registers into offsets 1..

copyRegArgs :: [a] -> Asm 

copyRegArgs xs = [ IMov (stackVar i) (Reg r) | (_,r,i) <- zipWith3 

xs regs [1..] ]

  where regs   = [RDI, RSI, RDX, RCX, R8, R9]

-- Copy remaining args from stack into offsets 7..

copyStackArgs :: [a] -> Asm 

copyStackArgs xs = concat [ copyArg src dst | (_,src,dst) <- zip3 xs 

[-2,-3..] [7..] ]

  

-- Copy from RBP-offset-src to RBP-offset-dst

copyArg :: Int -> Int -> Asm

copyArg src dst = 

  [ IMov (Reg RAX) (stackVar src)

  , IMov (stackVar dst) (Reg RAX)

  ]

Execute Function Body
(As in cobra)

compileEnv initEnv body  generates the assembly for e  using initEnv , the

initial Env  created by paramsEnv

paramsEnv :: [Bind a] -> Env

paramsEnv xs = fromListEnv (zip xids [1..])

  where

    xids     = map bindId xs

paramsEnv xs  returns an Env  mapping each parameter to its stack position

(Recall that bindId  extracts the Id  from each Bind )

Compiling Calls
Finally, lets extend code generation to account for calls:

compileEnv :: Env -> AnfTagE -> [Instruction]

compileEnv env (App f vs _) = call (DefFun f) [immArg env v | v <- v

s]

EXERCISE The hard work in compiling calls is done by:

call :: Label -> [Arg] -> [Instruction]

which implements the strategy for calls. Fill in the implementation of call

yourself. As an example, of its behavior, consider the (source) program:

def add2(x, y):

  x + y

add2(12, 7)

The call add2(12, 7)  is represented as:

App "add2" [Number 12, Number 7]

The code for the above call is generated by

call (DefFun "add2") [arg 12, arg 7]

where arg  converts source values into assembly Arg  which should generate the

equivalent of the assembly:

  mov  rdi 24

  mov  rsi 14

  call label_def_add2

4. Compiling Tail Calls
Our language doesn’t have loops. While recursion is more general, it is more

expensive because it uses up stack space (and requires all the attendant management

overhead). For example (the python  program):

def sumTo(n):

  r = 0

  i = n

  while (0 <= i):

    r = r + i

    i = i - 1

  return r

sumTo(10000)

Requires a single stack frame

Can be implemented with 2 registers

But, the “equivalent” diamond  program

def sumTo(n):

  if (n <= 0):

    0

  else:

    n + sumTo(n - 1)

sumTo(10000)

Requires 10000  stack frames …

One for fac(10000) , one for fac(9999)  etc.

Tail Recursion
Fortunately, we can do much better.

A tail recursive function is one where the recursive call is the last operation done by

the function, i.e. where the value returned by the function is the same as the value

returned by the recursive call.

We can rewrite sumTo  using a tail-recursive loop  function:

def loop(r, i):

  if (0 <= i):

    let rr = r + i

      , ii = i - 1

    in

      loop(rr, ii)   # tail call
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      loop(rr, ii)   # tail call

  else:

    r

def sumTo(n):

  loop(0, n)

sumTo(10000)

Visualizing Tail Calls
Lets compare the execution of the two versions of sumTo

Plain Recursion
sumTo(5)

==> 5 + sumTo(4)

        ^^^^^^^^

==> 5 + [4 + sumTo(3)]

             ^^^^^^^^

==> 5 + [4 + [3 + sumTo(2)]]

                  ^^^^^^^^

==> 5 + [4 + [3 + [2 + sumTo(1)]]]

                       ^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + sumTo(0)]]]]

                            ^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + 0]]]]

                        ^^^^^

==> 5 + [4 + [3 + [2 + 1]]]

                   ^^^^^

==> 5 + [4 + [3 + 3]]

              ^^^^^

==> 5 + [4 + 6]

         ^^^^^

==> 5 + 10

    ^^^^^^

==> 15

Each call pushes a frame onto the call-stack;

The results are popped o! and added to the parameter at that frame.

Tail Recursion
sumTo(5)

==> loop(0, 5)

==> loop(5, 4)

==> loop(9, 3)

==> loop(12, 2)

==> loop(14, 1)

==> loop(15, 0)

==> 15

Accumulation happens in the parameter (not with the output),

Each call returns its result without further computation

No need to use call-stack, can make recursive call in place.

Tail recursive calls can be compiled into loops!

Tail Recursion Strategy
Here’s the code for sumTo

Tail Recursion Strategy
Instead of using call  to make the call, simply:

1. Copy the call’s arguments to the (same) stack position (as current args),

first six in rdi , rsi  etc. and rest in [rbp+16] , [rbp+18] …

2. Jump to the start of the function

but after the bit where setup the stack frame (to not do it again!)

That is, here’s what a naive implementation would look like:

mov rdi, [rbp - 8]        # push rr

mov rsi, [rbp - 16]       # push ii

call def_loop

but a tail-recursive call can instead be compiled as:

mov rdi, [rbp - 8]        # push rr

mov rsi, [rbp - 16]       # push ii

jmp def_loop_body

which has the e!ect of executing loop  literally as if it were a while-loop!

Requirements
To implement the above strategy, we need a way to:

1. Identify tail calls in the source Expr  (AST),

2. Compile the tail calls following the above strategy.

Types
We can do the above in a single step, i.e., we could identify the tail calls during the

code generation, but its cleaner to separate the steps into:

Labeling Expr  with Tail Calls

In the above, we have defined the types:

type BareP     = Program SourceSpan                 -- ^ each sub-ex

pression has source position metadata

type AnfP      = Program SourceSpan                 -- ^ each functi

on body in ANF

type AnfTagP   = Program (SourceSpan, Tag)          -- ^ each sub-ex

pression has unique tag

type AnfTagTlP = Program ((SourceSpan, Tag), Bool)  -- ^ each call i

s marked as "tail" or not

Transforms
Thus, to implement tail-call optimization, we need to write two transforms:

1. To Label each call with True  (if it is a tail call) or False  otherwise:

tails :: Program a -> Program (a, Bool)

2. To Compile tail calls, by extending compileEnv

Labeling Tail Calls

Which Calls are Tail Calls?

The Expr  in non tail positions

Prim1

Prim2

Let  (“bound expression”)

If  (“condition”)

cannot contain tail calls; all those values have some further computation performed

on them.

However, the Expr  in tail positions

If  (“then” and “else” branch)

Let  (“body”)

can contain tail calls (unless they appear under the first case)

Algorithm: Traverse Expr  using a Bool

Initially True  but

Toggled to False  under non-tail positions,

Used as “tail-label” at each call.

NOTE: All non-calls get a default tail-label of False .

tails :: Expr a -> Expr (a, Bool)

tails = go True                                         -- initially 

flag is True

  where

    noTail l z             = z (l, False)

    go _ (Number n l)      = noTail l (Number n)        

    go _ (Boolean b l)     = noTail l (Boolean b)

    go _ (Id     x l)      = noTail l (Id x)

    go _ (Prim2 o e1 e2 l) = noTail l (Prim2 o e1' e2')

      where

        [e1', e2']         = go False <$> [e1, e2]      -- "prim-arg

s" is non-tail

    go b (If c e1 e2 l)    = noTail l (If c' e1' e2')

      where

        c'                 = go False c                 -- "cond" is 

non-tail

        e1'                = go b     e1                -- "then" ma

y be tail

        e2'                = go b     e2                -- "else" ma

y be tail

    go b (Let x e1 e2 l)   = noTail l (Let x e1' e2')  

      where

        e1'                = go False e1                -- "bound-ex

pr" is non-tail

        e2'                = go b     e2                -- "body-exp

r" may be tail

    go b (App f es l)      = App f es' (l, b)           -- tail-labe

l is current flag

      where

        es'                = go False <$> es            -- "call arg

s" are non-tail

EXERCISE: How could we modify the above to only mark tail-recursive calls, i.e. to

the same function (whose declaration is being compiled?)

Compiling Tail Calls
Finally, to generate code, we need only add a special case to compileExpr

compileExpr :: Env -> AnfTagTlE -> [Instruction]

compileExpr env (App f vs l)

  | isTail l  = tailcall (DefFun f)     [immArg env v | v <- vs]

  | otherwise = call     (DefFunBody f) [immArg env v | v <- vs]

That is, if the call is not labeled as a tail call, generate code as before. Otherwise, use

tailcall  which implements our tail recursion strategy

tailcall :: Label -> [Arg] -> [Instruction]

tailcall l args

  = copyRegArgs       regArgs     -- copy into RDI, RSI,...

 ++ copyTailStackArgs stkArgs     -- copy into [RBP + 16], [RBP + 2

4] ...

 ++ [IJmp l]                      -- jump to start label

 where

    (regArgs, stkArgs) = splitAt 6 args

Recap
We just saw how to add support for first-class function

Definitions, and

Calls

and a way in which an important class of

Tail Recursive functions can be compiled as loops.

Later, we’ll see how to represent functions as values using closures.

   

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll, template by Armin

Ronacher, Please suggest fixes here.

!" !# !$ %!&

É

DETECT TailRec 11setup FRAME

Office
cans now

labelfunstart

T É

Rbi fimpartstosamens
11 Tear

DOWN FRAME

p plain

TL TAILREC

I new Bool

En

fallen
de TRUE

don'tpush astride
CREPT16

IRBPt243
etc

in
tuple

leggeateryttuples
heap

ferde
lance

lambdas
closures

https://ucsd-cse131.github.io/sp22/feed.xml
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/106612421534244742464
https://github.com/ucsd-cse131/sp22
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
http://github.com/ucsd-cse131/sp21

