
Functions
Next, we’ll build diamondback which adds support for

User-Defined Functions

In the process of doing so, we will learn about

Static Checking

Calling Conventions

Tail Recursion

Plan
1. Defining Functions

2. Checking Functions

3. Compiling Functions

4. Compiling Tail Calls

1. Defining Functions
First, lets add functions to our language.

As always, lets look at some examples.

Example: Increment
For example, a function that increments its input:

def incr(x):

 x + 1

incr(10)

We have a function definition followed by a single “main” expression, which is

evaluated to yield the program’s result 11 .

Example: Factorial
Here’s a somewhat more interesting example:

def fac(n):

 let t = print(n) in

 if (n < 1):

 1

 else:

 n * fac(n - 1)

fac(5)

This program should produce the result

5

4

3

2

1

0

120

Suppose we modify the above to produce intermediate results:

def fac(n):

 let t = print(n)

 , res = if (n < 1):

 1

 else:

 n * fac(n - 1)

 in

 print(res)

fac(5)

we should now get:

5

4

3

2

1

0

1

1

2

6

24

120

120

Example: Mutually Recursive Functions
For this language, the function definitions are global

any function can call any other function.

This lets us write mutually recursive functions like:

def even(n):

 if (n == 0):

 true

 else:

 odd(n - 1)

def odd(n):

 if (n == 0):

 false

 else:

 even(n - 1)

let t0 = print(even(0)),

 t1 = print(even(1)),

 t2 = print(even(2)),

 t3 = print(even(3))

in

 0

QUIZ What should be the result of executing the above?

1. false true false true 0

2. true false true false 0

3. false false false false 0

4. true true true true 0

Types
Lets add some new types to represent programs.

Bindings
Lets create a special type that represents places where variables are bound,

data Bind a = Bind Id a

A Bind is an Id decorated with an a

to save extra metadata like tags or source positions

to make it easy to report errors.

We will use Bind at two places:

1. Let-bindings,

2. Function parameters.

It will be helpful to have a function to extract the Id corresponding to a Bind

bindId :: Bind a -> Id

bindId (Bind x _) = x

Programs
A program is a list of declarations and main expression.

data Program a = Prog

 { pDecls :: [Decl a] -- ^ function declarations

 , pBody :: !(Expr a) -- ^ "main" expression

 }

Declarations
Each function lives is its own declaration,

data Decl a = Decl

 { fName :: (Bind a) -- ^ name

 , fArgs :: [Bind a] -- ^ parameters

 , fBody :: (Expr a) -- ^ body expression

 , fLabel :: a -- ^ metadata/tag

 }

Expressions
Finally, lets add function application (calls) to the source expressions:

data Expr a

 = ...

 | Let (Bind a) (Expr a) (Expr a) a

 | App Id [Expr a] a

An application or call comprises

an Id , the name of the function being called,

a list of expressions corresponding to the parameters, and

a metadata/tag value of type a .

(Note: that we are now using Bind instead of plain Id at a Let .)

Examples Revisited
Lets see how the examples above are represented:

>>> parseFile "tests/input/incr.diamond"

Prog {pDecls = [Decl { fName = Bind "incr" ()

 , fArgs = [Bind "n" ()]

 , fBody = Prim2 Plus (Id "n" ()) (Number 1 ())

()

 , fLabel = ()}

]

 , pBody = App "incr" [Number 5 ()] ()

 }

>>> parseFile "tests/input/fac.diamond"

Prog { pDecls = [Decl {fName = Bind "fac" ()

 , fArgs = [Bind "n" ()]

 , fBody = Let (Bind "t" ()) (Prim1 Print (Id "n" ())

())

 (If (Prim2 Less (Id "n" ()) (Number 1 ())

())

cse131 Canvas Piazza Contact Grades Lectures Assignments Links

https://ucsd-cse131.github.io/sp22

())

 (Number 1 ())

 (Prim2 Times (Id "n" ())

 (App "fac" [Prim2 Minus (Id "n" ())

(Number 1 ()) ()] ())

 ()) ()) ()

 , fLabel = ()}

]

 , pBody = App "fac" [Number 5 ()] ()

 }

2. Static Checking
Next, we will look at an increasingly important aspect of compilation, pointing out

bugs in the code at compile time

Called Static Checking because we do this without (i.e. before) compiling and

running the code.

There is a huge spectrum of checks possible:

Code Linting jslint, hlint

Static Typing

Static Analysis

Contract Checking

Dependent or Refinement Typing

Increasingly, this is the most important phase of a compiler, and modern compiler

engineering is built around making these checks lightning fast. For more, see this

interview of Anders Hejlsberg the architect of the C# and TypeScript compilers.

Static Well-formedness Checking
We will look at code linting and, later in the quarter, type systems in 131.

For the former, suppose you tried to compile:

def fac(n):

 let t = print(n) in

 if (n < 1):

 1

 else:

 n * fac(m - 1)

fact(5) + fac(3, 4)

We would like compilation to fail, not silently, but with useful messages:

$ make tests/output/err-fac.result

Errors found!

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

 6| n * fac(m - 1)

 ^

tests/input/err-fac.diamond:8:1-9: Function 'fact' is not defined

 8| fact(5) + fac(3, 4)

 ^^^^^^^^

tests/input/err-fac.diamond:(8:11)-(9:1): Wrong arity of arguments a

t call of fac

 8| fact(5) + fac(3, 4)

 ^^^^^^^^^

We get multiple errors:

1. The variable m is not defined,

2. The function fact is not defined,

3. The call fac has the wrong number of arguments.

Next, lets see how to update the architecture of our compiler to support these and

other kinds of errors.

Types: An Error Reporting API
An error message type:

data UserError = Error

 { eMsg :: !Text -- ^ error message

 , eSpan :: !SourceSpan -- ^ source position

 }

 deriving (Show, Typeable)

We make it an exception (that can be thrown):

instance Exception [UserError]

We can create errors with:

mkError :: Text -> SourceSpan -> Error

mkError msg l = Error msg l

We can throw errors with:

abort :: UserError -> a

abort e = throw [e]

We display errors with:

renderErrors :: [UserError] -> IO Text

which takes something like:

Error

 "Unbound variable 'm'"

 { file = "tests/input/err-fac"

 , startLine = 8

 , startCol = 1

 , endLine = 8

 , endCol = 9

 }

and produces a contextual message (that requires reading the source file),

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

 6| n * fac(m - 1)

 ^

We can put it all together by

-- bin/Main.hs

main :: IO ()

main = runCompiler `catch` esHandle

esHandle :: [UserError] -> IO ()

esHandle es = renderErrors es >>= hPutStrLn stderr >> exitFailure

Which runs the compiler and if any UserError are thrown, catch -es and renders

the result.

Transforms
Next, lets insert a checker phase into our pipeline:

Compiler Pipeline with Checking Phase

In the above, we have defined the types:

type BareP = Program SourceSpan -- ^ source position metada

ta

type AnfP = Program SourceSpan -- ^ sub-exprs in ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ sub-exprs have unique

tag

Catching Multiple Errors
Its rather irritating to get errors one-by-one.

To make using a language and compiler pleasant, lets return as many errors as

possible in each run.

We will implement this by writing the functions

wellFormed :: BareProgram -> [UserError]

which will recursively traverse the entire program, declaration and expression and

return the list of all errors.

If this list is empty, we just return the source unchanged,

Otherwise, we throw the list of found errors (and exit.)

Thus, our check function looks like this:

check :: BareProgram -> BareProgram

check p = case wellFormed p of

 [] -> p

 es -> throw es

Well-formed Programs, Declarations and
Expressions
The bulk of the work is done by three functions

-- Check a whole program

wellFormed :: BareProgram -> [UserError]

-- Check a single declaration

wellFormedD :: FunEnv -> BareDecl -> [UserError]

-- Check a single expression

wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

Well-formed Programs
To check the whole program

wellFormed :: BareProgram -> [UserError]

wellFormed (Prog ds e)

 = concat [wellFormedD fEnv d | d <- ds]

 ++ wellFormedE fEnv emptyEnv e

 where

 fEnv = funEnv ds

funEnv :: [Decl] -> FunEnv

funEnv ds = fromListEnv [(bindId f, length xs)

 | Decl f xs _ _ <- ds]

This function,

1. Creates FunEnv , a map from function-names to the function-arity (number of

params),

2. Computes the errors for each declaration (given functions in fEnv),

3. Concatenates the resulting lists of errors.

QUIZ
Which function(s) would we have to modify to add large number errors (i.e. errors for

numeric literals that may cause overflow)?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

QUIZ
Which function(s) would we have to modify to add variable shadowing errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

between

o th

Functions
Defined behavior YStatic Checker
Compile Fun Call

Tail Recursion

checkPng

Expr K

def fac n

let n 5 in

if

http://jshint.com/
https://hackage.haskell.org/package/hlint
https://ucsd-progsys.github.io/liquidhaskell-blog/
https://www.infoq.com/news/2016/05/anders-hejlsberg-compiler

QUIZ
Which function(s) would we have to modify to add duplicate parameter errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

QUIZ
Which function(s) would we have to modify to add duplicate function errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

Traversals
Lets look at how we might check for two types of errors:

1. “unbound variables”

2. “undefined functions”

(In your assignment, you will look for many more.)

The helper function wellFormedD creates an initial variable environment vEnv

containing the functions parameters, and uses that (and fEnv) to walk over the

body-expressions.

wellFormedD :: FunEnv -> BareDecl -> [UserError]

wellFormedD fEnv (Decl _ xs e _) = wellFormedE fEnv vEnv e

 where

 vEnv = addsEnv xs emptyEnv

The helper function wellFormedE starts with the input

vEnv0 which has the function parameters, and

fEnv that has the defined functions,

and traverses the expression:

At each definition Let x e1 e2 , the variable x is added to the environment

used to check e2 ,

At each use Id x we check if x is in vEnv and if not, create a suitable

UserError

At each call App f es we check if f is in fEnv and if not, create a suitable

UserError .

wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

wellFormedE fEnv vEnv0 e = go vEnv0 e

 where

 gos vEnv es = concatMap (go vEnv) es

 go _ (Boolean {}) = []

 go _ (Number n l) = []

 go vEnv (Id x l) = unboundVarErrors vEnv x l

 go vEnv (Prim1 _ e _) = go vEnv e

 go vEnv (Prim2 _ e1 e2 _) = gos vEnv [e1, e2]

 go vEnv (If e1 e2 e3 _) = gos vEnv [e1, e2, e3]

 go vEnv (Let x e1 e2 _) = go vEnv e1

 ++ go (addEnv x vEnv) e2

 go vEnv (App f es l) = unboundFunErrors fEnv f l

 ++ gos vEnv es

You should understand the above and be able to easily add extra error checks.

3. Compiling Functions

Compiler Pipeline for Functions

In the above, we have defined the types:

type BareP = Program SourceSpan -- ^ each sub-expression ha

s source position metadata

type AnfP = Program SourceSpan -- ^ each function body in

ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ each sub-expression ha

s unique tag

Tagging

Compiler Pipeline ANF

The tag phase simply recursively tags each function body and the main expression

ANF Conversion

Compiler Pipeline ANF

The normalize phase (i.e. anf) is recursively applied to each function body.

In addition to Prim2 operands, each call’s arguments should be transformed

into an immediate expression

Generalize the strategy for binary operators

from (2 arguments) to n -arguments.

Strategy
Now, lets look at compiling function definitions and calls.

Compiler Pipeline with Checking Phase

We need a co-ordinated strategy for definitions and calls.

Function Definitions

Each definition is compiled into a labeled block of Asm

That implements the body of the definitions.

(But what about the parameters)?

Function Calls

Each call of f(args) will execute the block labeled f

(But what about the parameters)?

Strategy: The Stack

Stack Frames

We will use our old friend, the stack to

pass parameters

have local variables for called functions.

X86-64 Calling Convention
We are using the x86-64 calling convention, that ensures the following stack

layout:

Stack Layout

Suppose we have a function foo defined as

def foo(x1,x2,...):

 e

When the function body starts executing

the first 6 parameters x1 , x2 , … x6 are at rdi , rsi , rdx , rcx , r8 and r9

the remaining x7 , x8 … are at [rbp + 8*2] , [rbp + 8*3] , …

When the function exits

the return value is in rax

Pesky detail on Stack Alignment
At both definition and call, you need to also respect the 16-Byte Stack Alignment

Invariant

Ensure rsp is always a multiple of 16 .

i.e. pad to ensure an even number of arguments on stack

Strategy: Definitions
Thus to compile each definition

def foo(x1,x2,...):

 body

we must

1. Setup Frame to allocate space for local variables by ensuring that rsp and rbp

are properly managed

2. Copy parameters x1 , x2 ,… from the registers & stack

into stack-slots 1 , 2 ,… so we can access them in the body

3. Compile Body body with initial Env mapping parameters x1 => 1 , x2 => 2 ,

…

4. Teardown Frame to restore the caller’s rbp and rsp prior to ret urn.

deffacenin be an error

deft expr V7
def2

i
exp2

expr

3 wrongarty

O

f er er g bi

Y

bi v
Ha V2 bn ftp.fluie.us

Emp

CompileEnv

I t

Def Appfare

C Calizb

a local

f frame F D

É

L

patens Path te

f fideutlidyn
deftoo X Xcx

e

DD BOOBOO

87

1 2 3 9 5 6

https://ucsd-cse131.github.io/sp22/lectures/04-boa.md/#idea-immediate-expressions
https://ucsd-cse131.github.io/sp22/lectures/04-boa.md/#anf-implementation
https://aaronbloomfield.github.io/pdr/book/x86-64bit-ccc-chapter.pdf
https://en.wikipedia.org/wiki/X86_calling_conventions
https://ucsd-cse131.github.io/sp22/lectures/05-cobra.md/#managing-the-call-stack

Strategy: Calls
As before we must ensure that the parameters actually live at the above address.

1. Push the parameter values into the registers & stack,

2. Call the appropriate function (using its label),

3. Pop the arguments o! the stack by incrementing rsp appropriately.

Types
We already have most of the machinery needed to compile calls.

Lets just add a new kind of Label for each user-defined function:

data Label

 = ...

 | DefFun Id

Implementation
Lets can refactor our compile functions into:

-- Compile the whole program

compileProg :: AnfTagP -> Asm

-- Compile a single function declaration

compileDecl :: Bind -> [Bind] -> Expr -> Asm

-- Compile a single expression

compileExpr :: Env -> AnfTagE -> Asm

that respectively compile Program , Decl and Expr .

Compiling Programs
To compile a Program we compile

the main expression as Decl with no parameters and

each function declaration

compileProg (Prog ds e) =

 compileDecl (Bind "" ()) [] e

 ++ concat [compileDecl f xs e | (Decl f xs e _) <- ds]

QUIZ
Does it matter whether we put the code for e before ds ?

1. Yes

2. No

QUIZ
Does it matter what order we compile the ds ?

1. Yes

2. No

Compiling Declarations
To compile a single Decl we

1. Create a block starting with a label for the function’s name (so we know where

to call),

2. Invoke compileBody to fill in the assembly code for the body, using the initial

Env obtained from the function’s formal parameters.

compileDecl :: Bind a -> [Bind a] -> AExp -> [Instruction]

compileDecl f xs body =

 -- 0. Label for start of function

 [ILabel (DefFun (bindId f))]

 -- 1. Setup stack frame RBP/RSP

 ++ funEntry n

 -- label the 'body' for tail-calls

 ++ [ILabel (DefFunBody (bindId f))]

 -- 2. Copy parameters into stack slots

 ++ copyArgs xs

 -- 3. Execute 'body' with result in RAX

 ++ compileEnv initEnv body

 -- 4. Teardown stack frame & return

 ++ funExit n

 where

 -- space for params + locals

 n = length xs + countVars body

 initEnv = paramsEnv xs

Setup and Tear Down Stack Frame
(As in cobra)

Setup frame

funEntry :: Int -> [Instruction]

funEntry n =

 [IPush (Reg RBP) -- save caller's RBP

 , IMov (Reg RBP) (Reg RSP) -- set callee's RBP

 , ISub (Reg RSP) (Const (argBytes n)) -- allocate n local-vars

]

Teardown frame

funExit :: Int -> [Instruction]

funExit n =

 [IAdd (Reg RSP) (Const (argBytes n)) -- un-allocate n local-v

ars

 , IPop (Reg RBP) -- restore callee's RBP

 , IRet -- return to caller

]

Copy Parameters into Frame
copyArgs xs returns the instructions needed to copy the parameter values

From the combination of rdi , rsi , …

To this function’s frame, rdi -> [rbp - 8] , rsi -> [rbp - 16] ,…

copyArgs :: [a] -> Asm

copyArgs xs = copyRegArgs rXs -- copy upto 6 register args

 ++ copyStackArgs sXs -- copy remaining stack args

 where

 (rXs, sXs) = splitAt 6 xs

-- Copy upto 6 args from registers into offsets 1..

copyRegArgs :: [a] -> Asm

copyRegArgs xs = [IMov (stackVar i) (Reg r) | (_,r,i) <- zipWith3

xs regs [1..]]

 where regs = [RDI, RSI, RDX, RCX, R8, R9]

-- Copy remaining args from stack into offsets 7..

copyStackArgs :: [a] -> Asm

copyStackArgs xs = concat [copyArg src dst | (_,src,dst) <- zip3 xs

[-2,-3..] [7..]]

-- Copy from RBP-offset-src to RBP-offset-dst

copyArg :: Int -> Int -> Asm

copyArg src dst =

 [IMov (Reg RAX) (stackVar src)

 , IMov (stackVar dst) (Reg RAX)

]

Execute Function Body
(As in cobra)

compileEnv initEnv body generates the assembly for e using initEnv , the

initial Env created by paramsEnv

paramsEnv :: [Bind a] -> Env

paramsEnv xs = fromListEnv (zip xids [1..])

 where

 xids = map bindId xs

paramsEnv xs returns an Env mapping each parameter to its stack position

(Recall that bindId extracts the Id from each Bind)

Compiling Calls
Finally, lets extend code generation to account for calls:

compileEnv :: Env -> AnfTagE -> [Instruction]

compileEnv env (App f vs _) = call (DefFun f) [immArg env v | v <- v

s]

EXERCISE The hard work in compiling calls is done by:

call :: Label -> [Arg] -> [Instruction]

which implements the strategy for calls. Fill in the implementation of call

yourself. As an example, of its behavior, consider the (source) program:

def add2(x, y):

 x + y

add2(12, 7)

The call add2(12, 7) is represented as:

App "add2" [Number 12, Number 7]

The code for the above call is generated by

call (DefFun "add2") [arg 12, arg 7]

where arg converts source values into assembly Arg which should generate the

equivalent of the assembly:

 mov rdi 24

 mov rsi 14

 call label_def_add2

4. Compiling Tail Calls
Our language doesn’t have loops. While recursion is more general, it is more

expensive because it uses up stack space (and requires all the attendant management

overhead). For example (the python program):

def sumTo(n):

 r = 0

 i = n

 while (0 <= i):

 r = r + i

 i = i - 1

 return r

sumTo(10000)

Requires a single stack frame

Can be implemented with 2 registers

But, the “equivalent” diamond program

def sumTo(n):

 if (n <= 0):

 0

 else:

 n + sumTo(n - 1)

sumTo(10000)

Requires 10000 stack frames …

One for fac(10000) , one for fac(9999) etc.

Tail Recursion
Fortunately, we can do much better.

A tail recursive function is one where the recursive call is the last operation done by

the function, i.e. where the value returned by the function is the same as the value

returned by the recursive call.

We can rewrite sumTo using a tail-recursive loop function:

def loop(r, i):

 if (0 <= i):

 let rr = r + i

 , ii = i - 1

 in

 loop(rr, ii) # tail call

Def 1 label fac
codeforfeeD Dof2

data Exm
Label sum

1 App Id Expo
codeCorsa

data Ded
our code here

O

Tamearge body

u

label add2
setupstack

isteardownstache

11other fun
initstacrame pianist
o moreargs
a call call labeladal

f

https://ucsd-cse131.github.io/sp22/lectures/05-cobra.md/#in-the-caller
https://ucsd-cse131.github.io/sp22/lectures/05-cobra.md/a-typeclass-for-representing-constants

 loop(rr, ii) # tail call

 else:

 r

def sumTo(n):

 loop(0, n)

sumTo(10000)

Visualizing Tail Calls
Lets compare the execution of the two versions of sumTo

Plain Recursion
sumTo(5)

==> 5 + sumTo(4)

 ^^^^^^^^

==> 5 + [4 + sumTo(3)]

 ^^^^^^^^

==> 5 + [4 + [3 + sumTo(2)]]

 ^^^^^^^^

==> 5 + [4 + [3 + [2 + sumTo(1)]]]

 ^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + sumTo(0)]]]]

 ^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + 0]]]]

 ^^^^^

==> 5 + [4 + [3 + [2 + 1]]]

 ^^^^^

==> 5 + [4 + [3 + 3]]

 ^^^^^

==> 5 + [4 + 6]

 ^^^^^

==> 5 + 10

 ^^^^^^

==> 15

Each call pushes a frame onto the call-stack;

The results are popped o! and added to the parameter at that frame.

Tail Recursion
sumTo(5)

==> loop(0, 5)

==> loop(5, 4)

==> loop(9, 3)

==> loop(12, 2)

==> loop(14, 1)

==> loop(15, 0)

==> 15

Accumulation happens in the parameter (not with the output),

Each call returns its result without further computation

No need to use call-stack, can make recursive call in place.

Tail recursive calls can be compiled into loops!

Tail Recursion Strategy
Here’s the code for sumTo

Tail Recursion Strategy
Instead of using call to make the call, simply:

1. Copy the call’s arguments to the (same) stack position (as current args),

first six in rdi , rsi etc. and rest in [rbp+16] , [rbp+18] …

2. Jump to the start of the function

but after the bit where setup the stack frame (to not do it again!)

That is, here’s what a naive implementation would look like:

mov rdi, [rbp - 8] # push rr

mov rsi, [rbp - 16] # push ii

call def_loop

but a tail-recursive call can instead be compiled as:

mov rdi, [rbp - 8] # push rr

mov rsi, [rbp - 16] # push ii

jmp def_loop_body

which has the e!ect of executing loop literally as if it were a while-loop!

Requirements
To implement the above strategy, we need a way to:

1. Identify tail calls in the source Expr (AST),

2. Compile the tail calls following the above strategy.

Types
We can do the above in a single step, i.e., we could identify the tail calls during the

code generation, but its cleaner to separate the steps into:

Labeling Expr with Tail Calls

In the above, we have defined the types:

type BareP = Program SourceSpan -- ^ each sub-ex

pression has source position metadata

type AnfP = Program SourceSpan -- ^ each functi

on body in ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ each sub-ex

pression has unique tag

type AnfTagTlP = Program ((SourceSpan, Tag), Bool) -- ^ each call i

s marked as "tail" or not

Transforms
Thus, to implement tail-call optimization, we need to write two transforms:

1. To Label each call with True (if it is a tail call) or False otherwise:

tails :: Program a -> Program (a, Bool)

2. To Compile tail calls, by extending compileEnv

Labeling Tail Calls

Which Calls are Tail Calls?

The Expr in non tail positions

Prim1

Prim2

Let (“bound expression”)

If (“condition”)

cannot contain tail calls; all those values have some further computation performed

on them.

However, the Expr in tail positions

If (“then” and “else” branch)

Let (“body”)

can contain tail calls (unless they appear under the first case)

Algorithm: Traverse Expr using a Bool

Initially True but

Toggled to False under non-tail positions,

Used as “tail-label” at each call.

NOTE: All non-calls get a default tail-label of False .

tails :: Expr a -> Expr (a, Bool)

tails = go True -- initially

flag is True

 where

 noTail l z = z (l, False)

 go _ (Number n l) = noTail l (Number n)

 go _ (Boolean b l) = noTail l (Boolean b)

 go _ (Id x l) = noTail l (Id x)

 go _ (Prim2 o e1 e2 l) = noTail l (Prim2 o e1' e2')

 where

 [e1', e2'] = go False <$> [e1, e2] -- "prim-arg

s" is non-tail

 go b (If c e1 e2 l) = noTail l (If c' e1' e2')

 where

 c' = go False c -- "cond" is

non-tail

 e1' = go b e1 -- "then" ma

y be tail

 e2' = go b e2 -- "else" ma

y be tail

 go b (Let x e1 e2 l) = noTail l (Let x e1' e2')

 where

 e1' = go False e1 -- "bound-ex

pr" is non-tail

 e2' = go b e2 -- "body-exp

r" may be tail

 go b (App f es l) = App f es' (l, b) -- tail-labe

l is current flag

 where

 es' = go False <$> es -- "call arg

s" are non-tail

EXERCISE: How could we modify the above to only mark tail-recursive calls, i.e. to

the same function (whose declaration is being compiled?)

Compiling Tail Calls
Finally, to generate code, we need only add a special case to compileExpr

compileExpr :: Env -> AnfTagTlE -> [Instruction]

compileExpr env (App f vs l)

 | isTail l = tailcall (DefFun f) [immArg env v | v <- vs]

 | otherwise = call (DefFunBody f) [immArg env v | v <- vs]

That is, if the call is not labeled as a tail call, generate code as before. Otherwise, use

tailcall which implements our tail recursion strategy

tailcall :: Label -> [Arg] -> [Instruction]

tailcall l args

 = copyRegArgs regArgs -- copy into RDI, RSI,...

 ++ copyTailStackArgs stkArgs -- copy into [RBP + 16], [RBP + 2

4] ...

 ++ [IJmp l] -- jump to start label

 where

 (regArgs, stkArgs) = splitAt 6 args

Recap
We just saw how to add support for first-class function

Definitions, and

Calls

and a way in which an important class of

Tail Recursive functions can be compiled as loops.

Later, we’ll see how to represent functions as values using closures.

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll, template by Armin

Ronacher, Please suggest fixes here.

!" !# !$ %!&

É

DETECT TailRec 11setup FRAME

Office
cans now

labelfunstart

T É

Rbi fimpartstosamens
11 Tear

DOWN FRAME

p plain

TL TAILREC

I new Bool

En

fallen
de TRUE

don'tpush astride
CREPT16

IRBPt243
etc

in
tuple

leggeateryttuples
heap

ferde
lance

lambdas
closures

https://ucsd-cse131.github.io/sp22/feed.xml
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/106612421534244742464
https://github.com/ucsd-cse131/sp22
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
http://github.com/ucsd-cse131/sp21

