
Branches and Binary Operators

BOA: Branches and Binary Operators
Next, lets add

Branches (if -expressions)

Binary Operators (+ , - , etc.)

In the process of doing so, we will learn about

Intermediate Forms

Normalization

Branches
Lets start first with branches (conditionals).

We will stick to our recipe of:

1. Build intuition with examples,

2. Model problem with types,

3. Implement with type-transforming-functions,

4. Validate with tests.

Examples
First, lets look at some examples of what we mean by branches.

For now, lets treat 0 as “false” and non-zero as “true”

Example: If1
if 10:

 22

else:

 sub1(0)

Since 10 is not 0 we evaluate the “then” case to get 22

Example: If2
if sub(1):

 22

else:

 sub1(0)

Since sub(1) is 0 we evaluate the “else” case to get -1

QUIZ: If3
if-else is also an expression so we can nest them:

What should the following evaluate to?

let x = if sub(1):

 22

 else:

 sub1(0)

in

 if x:

 add1(x)

 else:

 999

A. 999

B. 0

C. 1

D. 1000

E. -1

Control Flow in Assembly
To compile branches, we will use labels, comparisons and jumps

Labels
our_code_label:

 ...

Labels are “landmarks”

from which execution (control-flow) can be started, or

to which it can be diverted

Comparisons
cmp a1, a2

Perform a (numeric) comparison between the values a1 and a2 , and

Store the result in a special processor flag

Jumps
jmp LABEL # jump unconditionally (i.e. always)

je LABEL # jump if previous comparison result was EQUAL

jne LABEL # jump if previous comparison result was NOT-EQUAL

Use the result of the flag set by the most recent cmp

To continue execution from the given LABEL

QUIZ
Which of the following is a valid x86 encoding of

if 10:

 22

else

 33

QUIZ: Compiling if-else

Strategy
To compile an expression of the form

if eCond:

 eThen

else:

 eElse

We will:

1. Compile eCond

2. Compare the result (in rax) against 0

3. Jump if the result is zero to a special "IfFalse" label

At which we will evaluate eElse ,

Ending with a special "IfExit" label.

4. (Otherwise) continue to evaluate eTrue

And then jump (unconditionally) to the "IfExit" label.

Example: If-Expressions to Asm
Lets see how our strategy works by example:

Example: if1

Example: if1

Example: if2

Example: if2

cse131 Canvas Piazza Contact Grades Lectures Assignments Links

09

jump

brand comparisons

labels

A

Yonatan be men

E

f

cmp ray O

s
JMP IF exit

Iii

Ke Else

o f0
I

G

https://ucsd-cse131.github.io/sp22

Example: if3

Example: if3

Oops, cannot reuse labels across if-expressions!

Can’t use same label in two places (invalid assembly)

Example: if3 wrong

Oops, need distinct labels for each branch!

Require distinct tags for each if-else expression

Example: if3 tagged

Types: Source
Lets modify the Source Expression to add if-else expressions

data Expr a

 = Number Int a

 | Add1 (Expr a) a

 | Sub1 (Expr a) a

 | Let Id (Expr a) (Expr a) a

 | Var Id a

 | If (Expr a) (Expr a) (Expr a) a

Polymorphic tags of type a for each sub-expression

We can have di!erent types of tags

e.g. Source-Position information for error messages

Lets define a name for Tag (just integers).

type Tag = Int

We will now use:

type BareE = Expr () -- AST after parsing

type TagE = Expr Tag -- AST with distinct tags

Types: Assembly
Now, lets extend the Assembly with labels, comparisons and jumps:

data Label

 = BranchFalse Tag

 | BranchExit Tag

data Instruction

 = ...

 | ICmp Arg Arg -- Compare two arguments

 | ILabel Label -- Create a label

 | IJmp Label -- Jump always

 | IJe Label -- Jump if equal

 | IJne Label -- Jump if not-equal

Transforms
We can’t expect programmer to put in tags (yuck.)

Lets squeeze in a tagging transform into our pipeline

Adding Tagging to the Compiler Pipeline

Transforms: Parse
Just as before, but now puts a dummy () into each position

λ> let parseStr s = fmap (const ()) (parse "" s)

λ> let e = parseStr "if 1: 22 else: 33"

λ> e

If (Number 1 ()) (Number 22 ()) (Number 33 ()) ()

λ> label e

If (Number 1 ((),0)) (Number 22 ((),1)) (Number 33 ((),2)) ((),3)

Transforms: Tag
The key work is done by doTag i e

1. Recursively walk over the BareE named e starting tagging at counter i

2. Return a pair (i', e') of updated counter i' and tagged expression e'

QUIZ
doTag :: Int -> BareE -> (Int, TagE)

doTag i (Number n _) = (i + 1 , Number n i)

doTag i (Var x _) = (i + 1 , Var x i)

doTag i (Let x e1 e2 _) = (_2 , Let x e1' e2' i2)

 where

 (i1, e1') = doTag i e1

 (i2, e2') = doTag _1 e2

What expressions shall we fill in for _1 and _2 ?

{- A -} _1 = i

 _2 = i + 1

{- B -} _1 = i

 _2 = i1 + 1

{- C -} _1 = i

 _2 = i2 + 1

{- D -} _1 = i1

 _2 = i2 + 1

{- E -} _1 = i2

 _2 = i1 + 1

(ProTip: Use mapAccumL)

We can now tag the whole program by

Calling doTag with the initial counter (e.g. 0),

Throwing away the final counter.

tag :: BareE -> TagE

tag e = e' where (_, e') = doTag 0 e

Transforms: Code Generation
Now that we have the tags we lets implement our compilation strategy

compile env (If eCond eTrue eFalse i)

 = compile env eCond ++ -- compile `eCond`

 [ICmp (Reg RAX) (Const 0) -- compare result to 0

 , IJe (BranchFalse i) -- if-zero then jump to 'False'-

block

]

 ++ compile env eTrue ++ -- code for `True`-block

 [IJmp lExit] -- jump to exit (skip `False`-bl

ock!)

 ++

 ILabel (BranchFalse i) -- start of `False`-block

 : compile env eFalse ++ -- code for `False`-block

 [ILabel (BranchExit i)] -- exit

Recap: Branches
Tag each sub-expression,

Use tag to generate control-flow labels implementing branch.

Lesson: Tagged program representation simplifies compilation…

Next: another example of how intermediate representations help.

Binary Operations
You know the drill.

1. Build intuition with examples,

2. Model problem with types,

3. Implement with type-transforming-functions,

4. Validate with tests.

a

tag o e

if 10
add1 20

even it ÉiÉÉÉigiiio
to infinite 49

20

int I

put

Let xD
In d

e des
Misti

É

s

e tea

Compiling Binary Operations
Lets look at some expressions and figure out how they would get compiled.

Recall: We want the result to be in rax after the instructions finish.

QUIZ
What is the assembly corresponding to 33 - 10 ?

?1 rax, ?2

?3 rax, ?4

A. ?1 = sub , ?2 = 33 , ?3 = mov , ?4 = 10

B. ?1 = mov , ?2 = 33 , ?3 = sub , ?4 = 10

C. ?1 = sub , ?2 = 10 , ?3 = mov , ?4 = 33

D. ?1 = mov , ?2 = 10 , ?3 = sub , ?4 = 33

Example: Bin1
Lets start with some easy ones. The source:

Example: Bin 1

Strategy: Given n1 + n2

Move n1 into rax ,

Add n2 to rax .

Example: Bin2
What if the first operand is a variable?

Example: Bin 2

Simple, just copy the variable o! the stack into rax

Strategy: Given x + n

Move x (from stack) into rax ,

Add n to rax .

Example: Bin3
Same thing works if the second operand is a variable.

Example: Bin 3

Strategy: Given x + n

Move x (from stack) into rax ,

Add n to rax .

QUIZ
What is the assembly corresponding to (10 + 20) * 30 ?

mov rax, 10

?1 rax, ?2

?3 rax, ?4

A. ?1 = add , ?2 = 30 , ?3 = mul , ?4 = 20

B. ?1 = mul , ?2 = 30 , ?3 = add , ?4 = 20

C. ?1 = add , ?2 = 20 , ?3 = mul , ?4 = 30

D. ?1 = mul , ?2 = 20 , ?3 = add , ?4 = 30

Second Operand is Constant
In general, to compile e + n we can do

 compile e

 ++ -- result of e is in rax

 [add rax, n]

Example: Bin4
But what if we have nested expressions

(1 + 2) * (3 + 4)

Can compile 1 + 2 with result in rax …

.. but then need to reuse rax for 3 + 4

Need to save 1 + 2 somewhere!

Idea: How about use another register for 3 +
4 ?

But then what about (1 + 2) * (3 + 4) * (5 + 6) ?

In general, may need to save more sub-expressions than we have registers.

Question:

Why are 1 + 2 and x + y so easy to compile but (1 + 2) * (3 + 4) not?

Idea: Immediate Expressions
Why were 1 + 2 and x + y so easy to compile but (1 + 2) * (3 + 4) not?

As 1 and x are immediate expressions: their values don’t require any

computation!

Either a constant, or,

variable whose value is on the stack.

Idea: Administrative Normal Form (ANF)
An expression is in Administrative Normal Form (ANF)

ANF means all primitive operations have immediate arguments.

Primitive Operations: Those whose values we need for computation to proceed.

v1 + v2

v1 - v2

v1 * v2

QUIZ

ANF means all primitive operations have immediate arguments.

Is the following expression in ANF?

(1 + 2) * (4 - 3)

A. Yes, its ANF.

B. Nope, its not, because of +

C. Nope, its not, because of *

D. Nope, its not, because of -

E. Huh, WTF is ANF?

Conversion to ANF
So, the below is not in ANF as * has non-immediate arguments

(1 + 2) * (4 - 3)

However, note the following variant is in ANF

let t1 = 1 + 2

 , t2 = 4 - 3

in

 t1 * t2

How can we compile the above code?

; TODO in class

Binary Operations: Strategy
We can convert any expression to ANF

By adding “temporary” variables for sub-expressions

Compiler Pipeline with ANF

Step 1: Compiling ANF into Assembly

Step 2: Converting Expressions into ANF

Mov rax
330

sub ray 10

Nit na Nz thu the

Mov rax N

add rax na

add rax M3

qr
probp

IE
g

Brax

2 212 23 t

Mov ray RBP 8 1

add rax RBP 8 23

add rax RBP 8 33

16

s
reaxiraxige 16

s esp rbpge

Mor ratio
add rax 20
Mul rax 3

ioÉÉ e Jimmed
e to n

Good

lattein
2 t

Mor rax 1

L
add rax 2

MOVCrbp83 ray
e mov rax 4

sub rax 3
Mor Crbp163 rax

V V2 mov rax Crbp 8

Mai ray rbp 163

Types: Source
Lets add binary primitive operators

data Prim2

 = Plus | Minus | Times

and use them to extend the source language:

data Expr a

 = ...

 | Prim2 Prim2 (Expr a) (Expr a) a

So, for example, 2 + 3 would be parsed as:

Prim2 Plus (Number 2 ()) (Number 3 ()) ()

Types: Assembly
Need to add X86 instructions for primitive arithmetic:

data Instruction

 = ...

 | IAdd Arg Arg

 | ISub Arg Arg

 | IMul Arg Arg

Types: ANF
We can define a separate type for ANF (try it!)

… but …

super tedious as it requires duplicating a bunch of code.

Instead, lets write a function that describes immediate expressions

isImm :: Expr a -> Bool

isImm (Number _ _) = True

isImm (Var _ _) = True

isImm _ = False

We can now think of immediate expressions as:

type ImmExpr = {e:Expr | isImm e == True}

The subset of Expr such that isImm returns True

QUIZ
Similarly, lets write a function that describes ANF expressions

ANF means all primitive operations have immediate arguments.

isAnf :: Expr a -> Bool

isAnf (Number _ _) = True

isAnf (Var _ _) = True

isAnf (Prim2 _ e1 e2 _) = _1

isAnf (If e1 e2 e3 _) = _2

isAnf (Let x e1 e2 _) = _3

What should we fill in for _1 ?

{- A -} isAnf e1

{- B -} isAnf e2

{- C -} isAnf e1 && isAnf e2

{- D -} isImm e1 && isImm e2

{- E -} isImm e2

QUIZ
Similarly, lets write a function that describes ANF expressions

ANF means all primitive operations have immediate arguments.

isAnf :: Expr a -> Bool

isAnf (Number _ _) = True

isAnf (Var _ _) = True

isAnf (Prim1 _ e1 _) = isAnf e1

isAnf (Prim2 _ e1 e2 _) = isImm e1 && isImm e2

isAnf (If e1 e2 e3 _) = _2 && isANF e2 && isANF e3

isAnf (Let x e1 e2 _) = isANF e1 && isANF e2

What should we fill in for _2 ?

{- A -} isAnf e1

{- B -} isImm e1

{- C -} True

{- D -} False

We can now think of ANF expressions as:

type AnfExpr = {e:Expr | isAnf e == True}

The subset of Expr such that isAnf returns True

Use the above function to test our ANF conversion.

Types & Strategy
Writing the type aliases:

type BareE = Expr ()

type AnfE = Expr () -- such that isAnf is True

type AnfTagE = Expr Tag -- such that isAnf is True

type ImmTagE = Expr Tag -- such that isImm is True

we get the overall pipeline:

Compiler Pipeline with ANF: Types

Transforms: Compiling AnfTagE to Asm

Compiler Pipeline: ANF to ASM

The compilation from ANF is easy, lets recall our examples and strategy:

Strategy: Given v1 + v2 (where v1 and v2 are immediate expressions)

Move v1 into rax ,

Add v2 to rax .

compile :: Env -> TagE -> Asm

compile env (Prim2 o v1 v2)

 = [IMov (Reg RAX) (immArg env v1)

 , (prim2 o) (Reg RAX) (immArg env v2)

]

where we have a helper to find the Asm variant of a Prim2 operation

prim2 :: Prim2 -> Arg -> Arg -> Instruction

prim2 Plus = IAdd

prim2 Minus = ISub

prim2 Times = IMul

and another to convert an immediate expression to an x86 argument:

immArg :: Env -> ImmTag -> Arg

immArg _ (Number n _) = Const n

immArg env (Var x _) = RegOffset RBP i

 where

 i = fromMaybe err (lookup x env)

 err = error (printf "Error: '%s' is unbound" x)

QUIZ
Which of the below are in ANF ?

{- 1 -} 2 + 3 + 4

{- 2 -} let x = 12 in

 x + 1

{- 3 -} let x = 12

 , y = x + 6

 in

 x + y

{- 4 -} let x = 12

 , y = 18

 , t = x + y + 1

 in

 if t: 7 else: 9

A. 1, 2, 3, 4

B. 1, 2, 3

C. 2, 3, 4

D. 1, 2

E. 2, 3

Transforms: Compiling Bare to Anf
Next lets focus on A-Normalization i.e. transforming expressions into ANF

Compiler Pipeline: Bare to ANF

A-Normalization
We can fill in the base cases easily

anf (Number n) = Number n

anf (Var x) = Var x

Interesting cases are the binary operations

isANF ExPr Bool

is Imm Expr Bool

a isAnfe

but B also works

e ez
I

N Y Z

IMI O 1,2s

2 3 5 1 let to 2 3
to 5 1

in
t tr

un a

0

MakeANF BareE AnFE

Example: Anf-1
Left operand is not immediate

Example: ANF 1

Key Idea: Helper Function

imm :: BareE -> ([(Id, AnfE)], ImmE)

imm e returns ([(t1, a1),...,(tn, an)], v) where

ti, ai are new temporary variables bound to ANF expressions

v is an immediate value (either a constant or variable)

Such that e is equivalent to

let t1 = a1

 , ...

 , tn = an

in

 v

Lets look at some more examples.

Example: Anf-2
Left operand is not internally immediate

Example: ANF 2

Example: Anf-3
Both operands are not immediate

Example: ANF 3

ANF: General Strategy

ANF Strategy

1. Invoke imm on both the operands

2. Concat the let bindings

3. Apply the binary operator to the immediate values

ANF Implementation: Binary Operations
Lets implement the above strategy

anf (Prim2 o e1 e2) = lets (b1s ++ b2s)

 (Prim2 o (Var v1) (Var v2))

 where

 (b1s, v1) = imm e1

 (b2s, v2) = imm e2

lets :: [(Id, AnfE)] -> AnfE -> AnfE

lets [] e' = e

lets ((x,e):bs) e' = Let x e (lets bs e')

Intuitively, lets stitches together a bunch of definitions:

lets [(x1, e1), (x2, e2), (x3, e3)] e

 ===> Let x1 e1 (Let x2 e2 (Let x3 e3 e))

ANF Implementation: Let-bindings
For Let just make sure we recursively anf the sub-expressions.

anf (Let x e1 e2) = Let x e1' e2'

 where

 e1' = anf e1

 e2' = anf e2

ANF Implementation: Branches
Same principle applies to If

use anf to recursively transform the branches.

anf (If e1 e2 e3) = If e1' e2' e3'

 where

 e1' = anf e1

 e2' = anf e2

 e3' = anf e3

ANF: Making Arguments Immediate via imm
The workhorse is the function

imm :: BareE -> ([(Id, AnfE)], ImmE)

which creates temporary variables to crunch an arbitrary Bare into an immediate

value.

No need to create an variables if the expression is already immediate:

imm (Number n l) = ([], Number n l)

imm (Id x l) = ([], Id x l)

The tricky case is when the expression has a primitive operation:

imm (Prim2 o e1 e2) = (b1s ++ b2s ++ [(t, Prim2 o v1 v2)]

 , Id t)

 t = makeFreshVar ()

 (b1s, v1) = imm e1

 (b2s, v2) = imm e2

Oh, what shall we do when:

imm (If e1 e2 e3) = ???

imm (Let x e1 e2) = ???

Lets look at an example for inspiration.

Example: ANF 4

That is, simply

anf the relevant expressions,

bind them to a fresh variable.

imm e@(If _ _ _) = immExp e

imm e@(Let _ _ _) = immExp e

immExp :: Expr -> ([(Id, AnfE)], ImmE)

immExp e = ([(t, e')], t)

 where

 e' = anf e

 t = makeFreshVar ()

One last thing: Whats up with
makeFreshVar ?
Wait a minute, what is this magic FRESH ?

How can we create distinct names out of thin air?

(Sorry, no “global variables” in Haskell…)

We will use a counter, but will pass its value around

Just like doTag

anf :: Int -> BareE -> (Int, AnfE)

anf i (Number n l) = (i, Number n l)

anf i (Id x l) = (i, Id x l)

anf i (Let x e b l) = (i'', Let x e' b' l)

 where

 (i', e') = anf i e

 (i'', b') = anf i' b

anf i (Prim2 o e1 e2 l) = (i'', lets (b1s ++ b2s) (Prim2 o e1' e2'

l))

 where

 (i' , b1s, e1') = imm i e1

 (i'', b2s, e2') = imm i' e2

anf i (If c e1 e2 l) = (i''', lets bs (If c' e1' e2' l))

 where

 (i' , bs, c') = imm i c

 (i'' , e1') = anf i' e1

 (i''', e2') = anf i'' e2

and

imm :: Int -> AnfE -> (Int, [(Id, AnfE)], ImmE)

imm i (Number n l) = (i , [], Number n l)

imm i (Var x l) = (i , [], Var x l)

imm i (Prim2 o e1 e2 l) = (i''', bs, Var v l)

 where

 (i' , b1s, v1) = imm i e1

 (i'' , b2s, v2) = imm i' e2

 (i''', v) = fresh i''

 bs = b1s ++ b2s ++ [(v, Prim2 o v1 v2 l)]

imm i e@(If _ _ _ l) = immExp i e

imm i e@(Let _ _ _ l) = immExp i e

immExp :: Int -> BareE -> (Int, [(Id, AnfE)], ImmE)

immExp i e l = (i'', bs, Var v ())

 where

 (i' , e') = anf i e

 (i'', v) = fresh i'

 bs = [(v, e')]

where now, the fresh function returns a new counter and a variable

e Id Ant Id

E

Totem Imm

o

e
I enter

let mm

in
xtyr

e Ee
then

1 2 3 ti 1 2 test 3

to

bsa Vesaleaty

tight

Ee D

DsHbs It cared t

t

Adde e ft addle's
t

e t ez

let m co

in
at g

4

eel makedwee
It e's t

2 3 6 1

S Sz

where now, the fresh function returns a new counter and a variable

fresh :: Int -> (Int, Id)

fresh n = (n+1, "t" ++ show n)

Note this is super clunky. There is a really slick way to write the above code without

the clutter of the i but thats too much of a digression, but feel free to look it up

yourself

Recap and Summary
Just created Boa with

Branches (if -expressions)

Binary Operators (+ , - , etc.)

In the process of doing so, we will learned about

Intermediate Forms

Normalization

Specifically,

Compiler Pipeline with ANF

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll, template by Armin

Ronacher, Please suggest fixes here.

!" !# !$ %!&

https://cseweb.ucsd.edu/classes/wi12/cse230-a/lectures/monads.html
https://ucsd-cse131.github.io/sp22/feed.xml
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/106612421534244742464
https://github.com/ucsd-cse131/sp22
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
http://github.com/ucsd-cse131/sp21

