
Branches and Binary Operators

BOA: Branches and Binary Operators
Next, lets add

Branches ( if -expressions)

Binary Operators ( + , - , etc.)

In the process of doing so, we will learn about

Intermediate Forms

Normalization

Branches
Lets start first with branches (conditionals).

We will stick to our recipe of:

1. Build intuition with examples,

2. Model problem with types,

3. Implement with type-transforming-functions,

4. Validate with tests.

Examples
First, lets look at some examples of what we mean by branches.

For now, lets treat 0  as “false” and non-zero as “true”

Example: If1
if 10:

  22

else:

  sub1(0)

Since 10  is not 0  we evaluate the “then” case to get 22

Example: If2
if sub(1):

  22

else:

  sub1(0)

Since sub(1)  is 0  we evaluate the “else” case to get -1

QUIZ: If3
if-else  is also an expression so we can nest them:

What should the following evaluate to?

let x = if sub(1):

          22

        else:

          sub1(0)

in

  if x:

    add1(x)

  else:

    999

A. 999

B. 0

C. 1

D. 1000

E. -1

Control Flow in Assembly
To compile branches, we will use labels, comparisons and jumps

Labels
our_code_label:

  ...

Labels are “landmarks”

from which execution (control-flow) can be started, or

to which it can be diverted

Comparisons
cmp a1, a2

Perform a (numeric) comparison between the values a1  and a2 , and

Store the result in a special processor flag

Jumps
jmp LABEL     # jump unconditionally (i.e. always)

je  LABEL     # jump if previous comparison result was EQUAL  

jne LABEL     # jump if previous comparison result was NOT-EQUAL  

Use the result of the flag set by the most recent cmp

To continue execution from the given LABEL

QUIZ
Which of the following is a valid x86 encoding of

if 10:

  22

else

  33

QUIZ: Compiling if-else

Strategy
To compile an expression of the form

if eCond:

  eThen

else:

  eElse

We will:

1. Compile eCond

2. Compare the result (in rax ) against 0

3. Jump if the result is zero to a special "IfFalse"  label

At which we will evaluate eElse ,

Ending with a special "IfExit"  label.

4. (Otherwise) continue to evaluate eTrue

And then jump (unconditionally) to the "IfExit"  label.

Example: If-Expressions to Asm
Lets see how our strategy works by example:

Example: if1

Example: if1

Example: if2

Example: if2
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Example: if3

Example: if3

Oops, cannot reuse labels across if-expressions!

Can’t use same label in two places (invalid assembly)

Example: if3 wrong

Oops, need distinct labels for each branch!

Require distinct tags for each if-else  expression

Example: if3 tagged

Types: Source
Lets modify the Source Expression to add if-else  expressions

data Expr a

  = Number Int                        a

  | Add1   (Expr a)                   a

  | Sub1   (Expr a)                   a

  | Let    Id (Expr a) (Expr a)       a

  | Var    Id                         a

  | If     (Expr a) (Expr a) (Expr a) a

Polymorphic tags of type a  for each sub-expression

We can have di!erent types of tags

e.g. Source-Position information for error messages

Lets define a name for Tag  (just integers).

type Tag   = Int

We will now use:

type BareE = Expr ()     -- AST after parsing

type TagE  = Expr Tag    -- AST with distinct tags

Types: Assembly
Now, lets extend the Assembly with labels, comparisons and jumps:

data Label

  = BranchFalse Tag

  | BranchExit  Tag

data Instruction

  = ...

  | ICmp   Arg   Arg  -- Compare two arguments

  | ILabel Label      -- Create a label

  | IJmp   Label      -- Jump always

  | IJe    Label      -- Jump if equal  

  | IJne   Label      -- Jump if not-equal

Transforms
We can’t expect programmer to put in tags (yuck.)

Lets squeeze in a tagging  transform into our pipeline

Adding Tagging to the Compiler Pipeline

Transforms: Parse
Just as before, but now puts a dummy ()  into each position

λ> let parseStr s = fmap (const ()) (parse "" s)

λ> let e = parseStr "if 1: 22 else: 33"

λ> e

If (Number 1 ()) (Number 22 ()) (Number 33 ()) ()

λ> label e

If (Number 1 ((),0)) (Number 22 ((),1)) (Number 33 ((),2)) ((),3)

Transforms: Tag
The key work is done by doTag i e

1. Recursively walk over the BareE  named e  starting tagging at counter i

2. Return a pair (i', e')  of updated counter i'  and tagged expression e'

QUIZ
doTag :: Int -> BareE -> (Int, TagE)

doTag i (Number n _)    = (i + 1 , Number n i)

doTag i (Var    x _)    = (i + 1 , Var     x i)

doTag i (Let x e1 e2 _) = (_2    , Let x e1' e2' i2)

  where

    (i1, e1')           = doTag i  e1

    (i2, e2')           = doTag _1 e2

What expressions shall we fill in for _1  and _2  ?

{- A -}   _1 = i

          _2 = i + 1

{- B -}   _1 = i

          _2 = i1 + 1

{- C -}   _1 = i

          _2 = i2 + 1

{- D -}   _1 = i1

          _2 = i2 + 1

{- E -}   _1 = i2

          _2 = i1 + 1

(ProTip: Use mapAccumL )

We can now tag the whole program by

Calling doTag  with the initial counter (e.g. 0 ),

Throwing away the final counter.

tag :: BareE -> TagE

tag e = e'  where  (_, e') = doTag 0 e

Transforms: Code Generation
Now that we have the tags we lets implement our compilation strategy

compile env (If eCond eTrue eFalse i)

  =   compile env eCond ++          -- compile `eCond`

    [ ICmp (Reg RAX) (Const 0)      -- compare result to 0

    , IJe (BranchFalse i)           -- if-zero then jump to 'False'-

block

    ]

   ++ compile env eTrue  ++         -- code for `True`-block

    [ IJmp   lExit      ]           -- jump to exit (skip `False`-bl

ock!)

   ++

      ILabel (BranchFalse i)        -- start of `False`-block

   : compile env eFalse ++          -- code for `False`-block

    [ ILabel (BranchExit i) ]       -- exit

Recap: Branches
Tag  each sub-expression,

Use tag to generate control-flow labels implementing branch.

Lesson: Tagged program representation simplifies compilation…

Next: another example of how intermediate representations help.

Binary Operations
You know the drill.

1. Build intuition with examples,

2. Model problem with types,

3. Implement with type-transforming-functions,

4. Validate with tests.
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Compiling Binary Operations
Lets look at some expressions and figure out how they would get compiled.

Recall: We want the result to be in rax  after the instructions finish.

QUIZ
What is the assembly corresponding to 33 - 10  ?

?1 rax, ?2

?3 rax, ?4

A. ?1 = sub , ?2 = 33 , ?3 = mov , ?4 = 10

B. ?1 = mov , ?2 = 33 , ?3 = sub , ?4 = 10

C. ?1 = sub , ?2 = 10 , ?3 = mov , ?4 = 33

D. ?1 = mov , ?2 = 10 , ?3 = sub , ?4 = 33

Example: Bin1
Lets start with some easy ones. The source:

Example: Bin 1

Strategy: Given n1 + n2

Move n1  into rax ,

Add n2  to rax .

Example: Bin2
What if the first operand is a variable?

Example: Bin 2

Simple, just copy the variable o! the stack into rax

Strategy: Given x + n

Move x  (from stack) into rax ,

Add n  to rax .

Example: Bin3
Same thing works if the second operand is a variable.

Example: Bin 3

Strategy: Given x + n

Move x  (from stack) into rax ,

Add n  to rax .

QUIZ
What is the assembly corresponding to (10 + 20) * 30  ?

mov rax, 10

?1  rax, ?2

?3  rax, ?4

A. ?1 = add , ?2 = 30 , ?3 = mul , ?4 = 20

B. ?1 = mul , ?2 = 30 , ?3 = add , ?4 = 20

C. ?1 = add , ?2 = 20 , ?3 = mul , ?4 = 30

D. ?1 = mul , ?2 = 20 , ?3 = add , ?4 = 30

Second Operand is Constant
In general, to compile e + n  we can do

     compile e      

  ++              -- result of e is in rax

     [add rax, n]

Example: Bin4
But what if we have nested expressions

(1 + 2) * (3 + 4)

Can compile 1 + 2  with result in rax  …

.. but then need to reuse rax  for 3 + 4

Need to save 1 + 2  somewhere!

Idea: How about use another register for 3 +
4 ?

But then what about (1 + 2) * (3 + 4) * (5 + 6)  ?

In general, may need to save more sub-expressions than we have registers.

Question:

Why are 1 + 2  and x + y  so easy to compile but (1 + 2) * (3 + 4)  not?

Idea: Immediate Expressions
Why were 1 + 2  and x + y  so easy to compile but (1 + 2) * (3 + 4)  not?

As 1  and x  are immediate expressions: their values don’t require any

computation!

Either a constant, or,

variable whose value is on the stack.

Idea: Administrative Normal Form (ANF)
An expression is in Administrative Normal Form (ANF)

ANF means all primitive operations have immediate arguments.

Primitive Operations: Those whose values we need for computation to proceed.

v1 + v2

v1 - v2

v1 * v2

QUIZ

ANF means all primitive operations have immediate arguments.

Is the following expression in ANF?

(1 + 2) * (4 - 3)

A. Yes, its ANF.

B. Nope, its not, because of +

C. Nope, its not, because of *

D. Nope, its not, because of -

E. Huh, WTF is ANF?

Conversion to ANF
So, the below is not in ANF as *  has non-immediate arguments

(1 + 2) * (4 - 3)

However, note the following variant is in ANF

let t1 = 1 + 2

  , t2 = 4 - 3

in  

    t1 * t2

How can we compile the above code?

; TODO in class

Binary Operations: Strategy
We can convert any expression to ANF

By adding “temporary” variables for sub-expressions

Compiler Pipeline with ANF

Step 1: Compiling ANF into Assembly

Step 2: Converting Expressions into ANF
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Types: Source
Lets add binary primitive operators

data Prim2

  = Plus | Minus | Times

and use them to extend the source language:

data Expr a

  = ...

  | Prim2 Prim2  (Expr a) (Expr a) a

So, for example, 2 + 3  would be parsed as:

Prim2 Plus (Number 2 ()) (Number 3 ()) ()

Types: Assembly
Need to add X86 instructions for primitive arithmetic:

data Instruction

  = ...

  | IAdd Arg Arg

  | ISub Arg Arg

  | IMul Arg Arg

Types: ANF
We can define a separate type for ANF (try it!)

… but …

super tedious as it requires duplicating a bunch of code.

Instead, lets write a function that describes immediate expressions

isImm :: Expr a -> Bool

isImm (Number _ _) = True

isImm (Var    _ _) = True

isImm _            = False

We can now think of immediate expressions as:

type ImmExpr = {e:Expr | isImm e == True}

The subset of Expr  such that isImm  returns True

QUIZ
Similarly, lets write a function that describes ANF expressions

ANF means all primitive operations have immediate arguments.

isAnf :: Expr a -> Bool

isAnf (Number  _     _) = True

isAnf (Var     _     _) = True

isAnf (Prim2 _ e1 e2 _) = _1

isAnf (If e1 e2 e3   _) = _2

isAnf (Let x e1 e2   _) = _3

What should we fill in for _1 ?

{- A -} isAnf e1

{- B -} isAnf e2

{- C -} isAnf e1 && isAnf e2

{- D -} isImm e1 && isImm e2

{- E -} isImm e2

QUIZ
Similarly, lets write a function that describes ANF expressions

ANF means all primitive operations have immediate arguments.

isAnf :: Expr a -> Bool

isAnf (Number  _     _) = True

isAnf (Var     _     _) = True

isAnf (Prim1 _ e1 _)    = isAnf e1 

isAnf (Prim2 _ e1 e2 _) = isImm e1 && isImm e2 

isAnf (If e1 e2 e3   _) = _2       && isANF e2 && isANF e3

isAnf (Let x e1 e2   _) = isANF e1 && isANF e2 

What should we fill in for _2 ?

{- A -} isAnf e1

{- B -} isImm e1

{- C -} True

{- D -} False

We can now think of ANF expressions as:

type AnfExpr = {e:Expr | isAnf e == True}

The subset of Expr  such that isAnf  returns True

Use the above function to test our ANF conversion.

Types & Strategy
Writing the type aliases:

type BareE   = Expr ()

type AnfE    = Expr ()  -- such that isAnf is True

type AnfTagE = Expr Tag -- such that isAnf is True

type ImmTagE = Expr Tag -- such that isImm is True

we get the overall pipeline:

Compiler Pipeline with ANF: Types

Transforms: Compiling AnfTagE  to Asm

Compiler Pipeline: ANF to ASM

The compilation from ANF is easy, lets recall our examples and strategy:

Strategy: Given v1 + v2  (where v1  and v2  are immediate expressions)

Move v1  into rax ,

Add v2  to rax .

compile :: Env -> TagE -> Asm

compile env (Prim2 o v1 v2)

  = [ IMov      (Reg RAX) (immArg env v1)

    , (prim2 o) (Reg RAX) (immArg env v2)

    ]

where we have a helper to find the Asm  variant of a Prim2  operation

prim2 :: Prim2 -> Arg -> Arg -> Instruction

prim2 Plus  = IAdd

prim2 Minus = ISub

prim2 Times = IMul

and another to convert an immediate expression to an x86 argument:

immArg :: Env -> ImmTag -> Arg

immArg _   (Number n _) = Const n

immArg env (Var    x _) = RegOffset RBP i

  where

    i                   = fromMaybe err (lookup x env)

    err                 = error (printf "Error: '%s' is unbound" x)

QUIZ
Which of the below are in ANF ?

{- 1 -} 2 + 3 + 4

{- 2 -} let x = 12 in

          x + 1

{- 3 -} let x = 12

          , y = x + 6

        in

          x + y

{- 4 -} let x = 12

          , y = 18

          , t = x + y + 1

        in

          if t: 7 else: 9

A. 1, 2, 3, 4

B. 1, 2, 3

C. 2, 3, 4

D. 1, 2

E. 2, 3

Transforms: Compiling Bare  to Anf
Next lets focus on A-Normalization i.e. transforming expressions into ANF

Compiler Pipeline: Bare to ANF

A-Normalization
We can fill in the base cases easily

anf (Number n)      = Number n

anf (Var x)         = Var x

Interesting cases are the binary operations

isANF ExPr Bool

is Imm Expr Bool
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Example: Anf-1
Left operand is not immediate

Example: ANF 1

Key Idea: Helper Function

imm :: BareE -> ([(Id, AnfE)], ImmE)

imm e  returns ([(t1, a1),...,(tn, an)], v)  where

ti, ai  are new temporary variables bound to ANF expressions

v  is an immediate value (either a constant or variable)

Such that e  is equivalent to

let t1 = a1

  , ...

  , tn = an

in

   v

Lets look at some more examples.

Example: Anf-2
Left operand is not internally immediate

Example: ANF 2

Example: Anf-3
Both operands are not immediate

Example: ANF 3

ANF: General Strategy

ANF Strategy

1. Invoke imm  on both the operands

2. Concat the let  bindings

3. Apply the binary operator to the immediate values

ANF Implementation: Binary Operations
Lets implement the above strategy

anf (Prim2 o e1 e2) = lets (b1s ++ b2s)

                        (Prim2 o (Var v1) (Var v2))

  where

    (b1s, v1)       = imm e1

    (b2s, v2)       = imm e2

lets :: [(Id, AnfE)] -> AnfE -> AnfE

lets []         e' = e

lets ((x,e):bs) e' = Let x e (lets bs e')

Intuitively, lets  stitches together a bunch of definitions:

lets [(x1, e1), (x2, e2), (x3, e3)] e

  ===> Let x1 e1 (Let x2 e2 (Let x3 e3 e))

ANF Implementation: Let-bindings
For Let  just make sure we recursively anf  the sub-expressions.

anf (Let x e1 e2)   = Let x e1' e2'

  where

    e1'             = anf e1

    e2'             = anf e2

ANF Implementation: Branches
Same principle applies to If

use anf  to recursively transform the branches.

anf (If e1 e2 e3) = If e1' e2' e3'  

  where

    e1'           = anf e1

    e2'           = anf e2

    e3'           = anf e3

ANF: Making Arguments Immediate via imm
The workhorse is the function

imm :: BareE -> ([(Id, AnfE)], ImmE)

which creates temporary variables to crunch an arbitrary Bare  into an immediate

value.

No need to create an variables if the expression is already immediate:

imm (Number n l) = ( [], Number n l )

imm (Id     x l) = ( [], Id     x l )

The tricky case is when the expression has a primitive operation:

imm (Prim2 o e1 e2) = ( b1s ++ b2s ++ [(t,  Prim2 o v1 v2)]

                      , Id t  )

  t                 = makeFreshVar ()

  (b1s, v1)         = imm e1

  (b2s, v2)         = imm e2  

Oh, what shall we do when:

imm (If e1 e2 e3)   = ???

imm (Let x e1 e2)   = ???

Lets look at an example for inspiration.

Example: ANF 4

That is, simply

anf  the relevant expressions,

bind them to a fresh variable.

imm e@(If _ _ _)  = immExp e

imm e@(Let _ _ _) = immExp e

immExp :: Expr -> ([(Id, AnfE)], ImmE)

immExp e = ([(t, e')], t)

  where

    e'   = anf e

    t    = makeFreshVar ()

One last thing: Whats up with
makeFreshVar  ?
Wait a minute, what is this magic FRESH ?

How can we create distinct names out of thin air?

(Sorry, no “global variables” in Haskell…)

We will use a counter, but will pass its value around

Just like doTag

anf :: Int -> BareE -> (Int, AnfE)

anf i (Number n l)      = (i, Number n l)

anf i (Id     x l)      = (i, Id     x l)

anf i (Let x e b l)     = (i'', Let x e' b' l)

  where

    (i',  e')           = anf i e

    (i'', b')           = anf i' b

anf i (Prim2 o e1 e2 l) = (i'', lets (b1s ++ b2s) (Prim2 o e1' e2' 

l))

  where

    (i' , b1s, e1')     = imm i  e1

    (i'', b2s, e2')     = imm i' e2

anf i (If c e1 e2 l)    = (i''', lets bs  (If c' e1' e2' l))

  where

    (i'  , bs, c')      = imm i   c

    (i'' ,     e1')     = anf i'  e1

    (i''',     e2')     = anf i'' e2

and

imm :: Int -> AnfE -> (Int, [(Id, AnfE)], ImmE)

imm i (Number n l)        = (i  , [], Number n l)

imm i (Var x l)           = (i  , [], Var x l)

imm i (Prim2 o e1 e2 l) = (i''', bs, Var v l)

  where

    (i'  , b1s, v1)     = imm i  e1

    (i'' , b2s, v2)     = imm i' e2

    (i''', v)           = fresh i''

    bs                  = b1s ++ b2s ++ [(v, Prim2 o v1 v2 l)]

imm i e@(If _ _ _  l)   = immExp i e

imm i e@(Let _ _ _ l)   = immExp i e

immExp :: Int -> BareE -> (Int, [(Id, AnfE)], ImmE)

immExp i e l  = (i'', bs, Var v ())

  where

    (i' , e') = anf i e

    (i'', v)  = fresh i'

    bs        = [(v, e')]

where now, the fresh  function returns a new counter and a variable
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where now, the fresh  function returns a new counter and a variable

fresh :: Int -> (Int, Id)

fresh n = (n+1, "t" ++ show n)

Note this is super clunky. There is a really slick way to write the above code without

the clutter of the i  but thats too much of a digression, but feel free to look it up

yourself

Recap and Summary
Just created Boa  with

Branches ( if -expressions)

Binary Operators ( + , - , etc.)

In the process of doing so, we will learned about

Intermediate Forms

Normalization

Specifically,

Compiler Pipeline with ANF
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