
Numbers, Unary Operations, Variables

Lets Write a Compiler!
Our goal is to write a compiler which is a function:

compiler :: SourceProgram -> TargetProgram

In 131 TargetProgram is going to be a binary executable.

Lets write our first Compilers
SourceProgram will be a sequence of four tiny “languages”

1. Numbers

e.g. 7 , 12 , 42 …

2. Numbers + Increment

e.g. add1(7) , add1(add1(12)) , …

3. Numbers + Increment + Decrement

e.g. add1(7) , add1(add1(12)) , sub1(add1(42))

4. Numbers + Increment + Decrement + Local Variables

e.g. let x = add1(7), y = add1(x) in add1(y)

Recall: What does a Compiler look like?

Compiler Pipeline

An input source program is converted to an executable binary in many stages:

Parsed into a data structure called an Abstract Syntax Tree

Checked to make sure code is well-formed (and well-typed)

Simplified into some convenient Intermediate Representation

Optimized into (equivalent) but faster program

Generated into assembly x86

Linked against a run-time (usually written in C)

Simplified Pipeline
Goal: Compile source into executable that, when run, prints the result of evaluating the

source.

Approach: Lets figure out how to write

1. A compiler from the input string into assembly,

2. A run-time that will let us do the printing.

Simplified Compiler Pipeline with Runtime

Next, lets see how to do (1) and (2) using our sequence of adder languages.

Adder-1
1. Numbers

e.g. 7 , 12 , 42 …

The “Run-time”
Lets work backwards and start with the run-time.

Here’s what it looks like as a C program main.c

#include <stdio.h>

extern int our_code() asm("our_code_label");

int main(int argc, char** argv) {

 int result = our_code();

 printf("%d\n", result);

 return 0;

}

main just calls our_code and prints its return value

our_code is (to be) implemented in assembly,

Starting at label our_code_label ,

With the desired return value stored in register RAX

per, the C calling convention

Test Systems in Isolation
Key idea in (Software) Engineering:

Decouple systems so you can test one component without (even implementing)

another.

Lets test our “run-time” without even building the compiler.

Testing the Runtime: A Really Simple Example
Given a SourceProgram

42

We want to compile the above into an assembly file forty_two.s that looks like:

section .text

global our_code_label

our_code_label:

 mov rax, 42

 ret

For now, lets just

write that file by hand, and test to ensure

object-generation and then

linking works

(On MacOS)

$ nasm -f macho64 -o forty_two.o forty_two.s

$ clang -g -m64 -o forty_two.run c-bits/main.c forty_two.o

(On Linux)

$ nasm -f elf64 -o forty_two.o forty_two.s

$ clang -g -m64 -o forty_two.run c-bits/main.c forty_two.o

We can now run it:

$ forty_two.run

42

Hooray!

The “Compiler”
Recall, that compilers were invented to avoid writing assembly by hand

First Step: Types
To go from source to assembly, we must do:

Simplified Pipeline

Our first step will be to model the problem domain using types.

Simplified Pipeline with Types

Lets create types that represent each intermediate value:

Text for the raw input source

Expr for the AST

Asm for the output x86 assembly

Defining the Types: Text
Text is raw strings, i.e. sequences of characters

texts :: [Text]

texts =

 ["It was a dark and stormy night..."

 , "I wanna hold your hand..."

 , "12"

]

Defining the Types: Expr
We convert the Text into a tree-structure defined by the datatype

data Expr = Number Int

Note: As we add features to our language, we will keep adding cases to Expr .

Defining the Types: Asm
Lets also do this gradually as the x86 instruction set is HUGE!

Recall, we need to represent

section .text

global our_code_label

our_code_label:

 mov rax, 42

 ret

An Asm program is a list of instructions each of which can:

Create a Label , or

Move a Arg into a Register

Return back to the run-time.

type Asm = [Instruction]

data Instruction

 = ILabel Text

 | IMov Arg Arg

 | IRet

Where we have

data Register

 = RAX

data Arg

 = Const Int -- a fixed number

 | Reg Register -- a register

Second Step: Transforms
Ok, now we just need to write the functions:

parse :: Text -> Expr -- 1. Transform source-string into AST

compile :: Expr -> Asm -- 2. Transform AST into assembly

asm :: Asm -> Text -- 3. Transform assembly into output-string

Pretty straightforward:

parse :: Text -> Expr

parse = parseWith expr

 where

 expr = integer

compile :: Expr -> Asm

compile (Number n) =

 [IMov (Reg RAX) (Const n)

 , IRet

]

asm :: Asm -> Text

asm is = L.intercalate "\n" [instr i | i <- is]

Where instr is a Text representation of each Instruction

instr :: Instruction -> Text

instr (IMov a1 a2) = printf "mov %s, %s" (arg a1) (arg a2)

arg :: Arg -> Text

arg (Const n) = printf "%d" n

arg (Reg r) = reg r

reg :: Register -> Text

reg RAX = "rax"

Brief digression: Type-Classes
Note that above we have four separate functions that crunch di!erent types to the Text

representation of x86 assembly:

asm :: Asm -> Text

instr :: Instruction -> Text

arg :: Arg -> Text

reg :: Register -> Text

Remembering names is hard.

We can write an overloaded function, and let the compiler figure out the correct

implementation from the type, using Type-Classes.

The following defines an interface for all those types a that can be converted to x86

assembly:

class ToX86 a where

 asm :: a -> Text

Now, to overload, we say that each of the types Asm , Instruction , Arg and Register

implements or has an instance of ToX86

instance ToX86 Asm where

 asm is = L.intercalate "\n" [asm i | i <- is]

instance ToX86 Instruction where

 asm (IMov a1 a2) = printf "mov %s, %s" (asm a1) (asm a2)

instance ToX86 Arg where

 asm (Const n) = printf "%d" n

 asm (Reg r) = asm r

cse131 Canvas Piazza Contact Grades Lectures Assignments Links

https://web.stanford.edu/class/cs107/guide/x86-64.html
https://ucsd-cse131.github.io/sp22/lectures/01-introduction.md/#a-bit-of-history
http://www.felixcloutier.com/x86/
https://ucsd-cse131.github.io/sp22

instance ToX86 Register where

 asm RAX = "rax"

Note in each case above, the compiler figures out the correct implementation, from the

types…

Adder-2
Well that was easy! Lets beef up the language!

2. Numbers + Increment

e.g. add1(7) , add1(add1(12)) , …

Repeat our Recipe
1. Build intuition with examples,

2. Model problem with types,

3. Implement compiler via type-transforming-functions,

4. Validate compiler via tests.

1. Examples
First, lets look at some examples.

Example 1
How should we compile?

add1(7)

In English

1. Move 7 into the rax register

2. Add 1 to the contents of rax

In ASM

mov rax, 7

add rax, 1

Aha, note that add is a new kind of Instruction

Example 2
How should we compile

add1(add1(12))

In English

1. Move 12 into the rax register

2. Add 1 to the contents of rax

3. Add 1 to the contents of rax

In ASM

mov rax, 12

add rax, 1

add rax, 1

Compositional Code Generation
Note correspondence between sub-expressions of source and assembly

Compositional Compilation

We will write compiler in compositional manner

Generating Asm for each sub-expression (AST subtree) independently,

Generating Asm for super-expression, assuming the value of sub-expression is in

RAX

2. Types
Next, lets extend the types to incorporate new language features

Extend Type for Source and Assembly
Source Expressions

data Expr = ...

 | Add1 Expr

Assembly Instructions

data Instruction

 = ...

 | IAdd Arg Arg

Example-1 Revisited
src1 = "add1(7)"

exp1 = Add1 (Number 7)

asm1 = [IMov (Reg RAX) (Const 7)

 , IAdd (Reg RAX) (Const 1)

]

Example-2 Revisited
src2 = "add1(add1(12))"

exp2 = Add1 (Add1 (Number 12))

asm2 = [IMov (Reg RAX) (Const 12)

 , IAdd (Reg RAX) (Const 1)

 , IAdd (Reg RAX) (Const 1)

]

3. Transforms
Now lets go back and suitably extend the transforms:

parse :: Text -> Expr -- 1. Transform source-string into AST

compile :: Expr -> Asm -- 2. Transform AST into assembly

asm :: Asm -> Text -- 3. Transform assembly into output-string

Lets do the easy bits first, namely parse and asm

Parse
parse :: Text -> Expr

parse = parseWith expr

expr :: Parser Expr

expr = try primExpr

 <|> integer

primExpr :: Parser Expr

primExpr = Add1 <$> rWord "add1" *> parens expr

Asm
To update asm just need to handle case for IAdd

instance ToX86 Instruction where

 asm (IMov a1 a2) = printf "mov %s, %s" (asm a1) (asm a2)

 asm (IAdd a1 a2) = printf "add %s, %s" (asm a1) (asm a2)

Note

1. GHC will tell you exactly which functions need to be extended (Types, FTW!)

2. We will not discuss parse and asm any more…

Compile
Finally, the key step is

compile :: Expr -> Asm

compile (Number n)

 = [IMov (Reg RAX) (Const n)

]

compile (Add1 e)

 = compile e -- RAX holds value of result of `e` ...

 ++ [IAdd (Reg RAX) (Const 1)] -- ... so just increment it.

Examples Revisited
Lets check that compile behaves as desired:

>>> (compile (Number 12)

[IMov (Reg RAX) (Const 12)]

>>> compile (Add1 (Number 12))

[IMov (Reg RAX) (Const 12)

, IAdd (Reg RAX) (Const 1)

]

>>> compile (Add1 (Add1 (Number 12)))

[IMov (Reg RAX) (Const 12)

, IAdd (Reg RAX) (Const 1)

, IAdd (Reg RAX) (Const 1)

]

Adder-3
You do it!

3. Numbers + Increment + Double

e.g. add1(7) , twice(add1(12)) , twice(twice(add1(42)))

Adder-4
4. Numbers + Increment + Decrement + Local Variables

e.g. let x = add1(7), y = add1(x) in add1(y)

Can you think why local variables make things more interesting?

Repeat our Recipe
1. Build intuition with examples,

2. Model problem with types,

3. Implement compiler via type-transforming-functions,

4. Validate compiler via tests.

Step 1: Examples
Lets look at some examples

Example: let1
let x = 10

in

 x

Need to store 1 variable – x

Example: let2
let x = 10 -- x = 10

 , y = add1(x) -- y = 11

 , z = add1(y) -- z = 12

in

 add1(z) -- 13

Need to store 3 variables– x, y, z

Example: let3
let a = 10

 , c = let b = add1(a)

 in

 add1(b)

in

 add1(c)

Need to store 3 variables – a , b , c – but at most 2 at a time

First a, b , then a, c

Don’t need b and c simultaneously

Problem: Registers are Not Enough
A single register rax is useless:

May need 2 or 3 or 4 or 5 … values.

There is only a fixed number (say, N) of registers

And our programs may need to store more than N values, so

Need to dig for more storage space!

Memory: Code, Globals, Heap and Stack
Here’s what the memory – i.e. storage – looks like:

Memory Layout

Focusing on “The Stack”
Lets zoom into the stack region, which when we start looks like this:

Stack Layout

The stack grows downward (i.e. to smaller addresses)

We have lots of 8-byte slots on the stack at o!sets from the “stack pointer” at addresses:

[RBP - 8 * 1] , [RBP - 8 * 2] , [RBP - 8 * 3] …,

Note: On 32-bit machines

We’d use the eax register (vs rax in 64-bit)

The “base” is the ebp register (vs rbp in 64-bit)

Each slot is 4 -bytes (vs 8 in 64-bit)

How to compute mapping from variables to slots ?
The i -th stack-variable lives at address [RBP - 8 * i]

Required A mapping

From source variables (x , y , z …)

To stack positions (1 , 2 , 3 …)

Solution The structure of the let s is stack-like too…

Maintain an Env that maps Id |-> StackPosition

let x = e1 in e2 adds x |-> i to Env

where i is ``current’’ size of stack.

Let-bindings and Stacks: Example-1
 -- []

let x = 1

in -- [x |-> 1]

 x

Let-bindings and Stacks: Example-2
 -- []

let x = 1

 -- [x |-> 1]

 , y = add1(x)

 -- [y |-> 2, x |-> 1]

 , z = add1(y)

in -- [z |- 3, y |-> 2, x |-> 1]

 add1(z)

QUIZ
At what position on the stack do we store variable c ?

let a = 1

 , c =

 let b = add1(a)

 in add1(b)

in

 add1(c)

A. 1

B. 2

C. 3

D. 4

E. not on stack!

Strategy
 -- ENV(n)

let x = E1

in -- [x |-> n+1, ENV(n)]

 E2

 -- ENV(n)

Strategy: Variable Definition
At each point, we have env that maps (previously defined) Id to StackPosition

To compile let x = e1 in e2 we

1. Compile e1 using env (i.e. resulting value will be stored in rax)

2. Move rax into [RBP - 8 * i]

3. Compile e2 using env'

(where env' be env with x |-> i i.e. push x onto env at position i)

Strategy: Variable Use
To compile x given env

1. Move [RBP - 8 * i] into rax

(where env maps x |-> i)

Example: Let-bindings to Asm
Lets see how our strategy works by example:

Example: let1

Convert let1 to Assembly

QUIZ: let2
When we compile

let x = 10

 , y = add1(x)

in

 add1(y)

The assembly looks like

mov rax, 10 ; LHS of let x = 10

mov [RBP - 8*1], rax ; save x on the stack

mov rax, [RBP - 8*1] ; LHS of , y = add1(x)

add rax, 1 ; ""

???

add rax, 1

What .asm instructions shall we fill in for ???

mov [RBP - 8 * 1], rax ; A

mov rax, [RBP - 8 * 1]

mov [RBP - 8 * 1], rax ; B

mov [RBP - 8 * 2], rax ; C

mov [RBP - 8 * 2], rax ; D

mov rax, [RBP - 8 * 2]

 ; E (empty! no instructions)

Example: let3
Lets compile

let a = 10

 , c = let b = add1(a)

 in

 add1(b)

in

 add1(c)

Lets figure out what the assembly looks like!

mov rax, 10 ; LHS of let a = 10

mov [RBP - 8*1], rax ; save a on the stack

???

Step 2: Types
Now, we’re ready to move to the implementation!

Source Expressions

type Id = Text

data Expr = ...

 | Let Id Expr Expr -- `let x = e1 in e2` represented as `Let

x e1 e2`

 | Var Id -- `x` represented as `Var x`

Assembly Instructions

Lets enrich the Instruction to include the register-o!set [RBP - 8*i]

data Arg = ...

 | RegOffset Reg Int -- `[RBP - 8*i]` modeled as `RegOffset RBP

i`

Environments
An Env type to track stack-positions of variables with API

push variable onto Env (returning its position),

lookup a variable’s position in Env

push :: Id -> Env -> (Int, Env)

push x env = (i, (x, i) : env)

 where

 i = 1 + length env

lookup :: Id -> Env -> Maybe Int

lookup x ((y, i) : env)

 | x == y = Just i

 | otherwise = lookup x env

lookup x [] = Nothing

Step 3: Transforms
Almost done: just write code formalizing the above strategy

Code: Variable Use
compileEnv env (Var x) = [IMov (Reg RAX) (RegOffset RBP i)]

 where

 i = fromMaybe err (lookup x env)

 err = error (printf "Error: Variable '%s' is unbound"

x)

Code: Variable Definition
compileEnv env (Let x e1 e2 l) = compileEnv env e1

 ++ IMov (RegOffset RBP i) (Reg RAX)

 : compileEnv env' e2

 where

 (i, env') = pushEnv x env

Step 4: Tests
Lets take our adder compiler out for a spin!

Recap: We just wrote our first Compilers
SourceProgram will be a sequence of four tiny “languages”

1. Numbers

e.g. 7 , 12 , 42 …

2. Numbers + Increment

e.g. add1(7) , add1(add1(12)) , …

3. Numbers + Increment + Decrement

e.g. add1(7) , add1(add1(12)) , sub1(add1(42))

4. Numbers + Increment + Decrement + Local Variables

e.g. let x = add1(7), y = add1(x) in add1(y)

Using a Recipe
1. Build intuition with examples,

2. Model problem with types,

3. Implement compiler via type-transforming-functions,

4. Validate compiler via tests.

Will iterate on this till we have a pretty kick-ass language.

! ! ! !

rsp

rbp

0in
ENV hassize n

ne Ntl ENV

let in yantz an Ntl ENV
let

zuntz yantz an Ntl ENV

C RBP 823Canst
a

I Corsz an 1

let a 45
in
iety É
in addÉ

Yesitwill

HellNo

let n 10 set x toRAX

addle

RAK

mov RBP8 1 RAXin move'sintoRax OFF RBP iMovRAX RBP8 1

addRAX I

MOV RAX CRBP ilet n E
Mov RBP8 1 RAYL

T
KEMen

g getpos env
in where

SEL enrEz Yeen setPosenure

self

getty

0 0

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll, template by Armin Ronacher,

Please suggest fixes here.

!" !# !$ %!&

https://ucsd-cse131.github.io/sp22/feed.xml
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/106612421534244742464
https://github.com/ucsd-cse131/sp22

