
Free Variables and Lambdas
Free Variables of a lambda

Those whose values come from outside

Should use the same values whenever we “call” the lambda .

For example:

let add = (lambda (n): (lambda (m): n + m))

 , f = (lambda (it): it(5))

 , plus1 = add(1)

 , plus10 = add(10)

in

 (f(plus1), f(plus10), plus10(20))

should evaluate to (6, 15, 30)

plus1 be like lambda (m): 1 + m

plus10 be like lambda (m): 10 + m

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

47 of 77 5/27/21, 9:22 AM

FDI closures
op t

oDp
add cq c

D
Qui
arity of add is

I
2

Achieving Closure
(Recall from CSE 130)

let add = (lambda (n): (lambda (m): n + m))

 , f = (lambda (it): it(5))

 , plus1 = add(1)

 , plus10 = add(10)

in

 (f(plus1), f(plus10), plus10(20))

should evaluate to (6, 15, 30)

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

48 of 77 5/27/21, 9:22 AM

plus1 be like lambda (m): 1 + m

plus10 be like lambda (m): 10 + m

Key Idea: Each function value must store its free variables

represent plus1 as:

(arity, code-label, [n := 1])

represent plus10 as:

(arity, code-label, [n := 10])

Same code, but di!erent free variables.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

49 of 77 5/27/21, 9:22 AM

Lam xs e

App e Cei en

Strategy Progression
1. Representation = Start-Label

Problem: How to do run-time checks of valid args?

2. Representation = (Arity, Start-Label)

Problem: How to map function names to tuples?

3. Lambda Terms Make functions just another expression!

Problem: How to store local variables?

4. Function Value (Arity, Start-Label, Free_1, ... , Free_N)

Ta Da!

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

50 of 77 5/27/21, 9:22 AM

Closures: Strategy
What if we have multiple free variables?

let foo = (lambda (x, y):

 (lambda (z): x + y + z)

)

 , plus10 = foo(4, 6)

 , plus20 = foo(7, 13)

in

 (plus10(0), plus20(100))

represent plus10 as:

(arity, code-label, [x := 4], [y := 6])

represent plus20 as:

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

51 of 77 5/27/21, 9:22 AM

a 4 y 631
Quit codepin1MUSD

(arity, code-label, [x := 7], [y := 13])

Example
Lets see how to evaluate

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

52 of 77 5/27/21, 9:22 AM

D

let foo = (lambda (x, y):

 (lambda (z): x + y + z)

)

 , plus10 = foo(4, 6)

in

 plus10(0)

Example
Lets see how to evaluate

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

53 of 77 5/27/21, 9:22 AM

i

plusto 1 4 yi6

µ

3

let foo = (lambda (x, y):

 (lambda (z): x + y + z)

)

 , plus10 = foo(4, 6)

 , f = (lambda (it): it(5))

in

 f(plus10)

Implementation
Representation

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

54 of 77 5/27/21, 9:22 AM

exists

100T

I
nos

coffin Tegopermit

1. How to store closures

Types:

Same as before

Transforms

1. Update tag and ANF

as before

2. Update checker

3. Update compile

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

55 of 77 5/27/21, 9:22 AM

x

Representation
We can represent a closure as a tuple of

(arity, code-ptr, free-var-1, ... free-var-N)

which means, following the convention for tuples, as:

--

| N + 2 | arity | code-ptr | var1 | ... | varN |

--

Where each cell represents 64-bits / 8-bytes / 1-(double)word.

Note: (As with all tuples) the first word contains the #elements of the tuple.

In this case N + 2

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

56 of 77 5/27/21, 9:22 AM

Yi Yz YzoY4
arity code41,4243,44

y 2

O
T ti ti

Transforms: Checker
What environment should we use to check a Lam body ?

wellFormed :: BareExpr -> [UserError]

wellFormed = go emptyEnv

where

...

 go vEnv (Lam xs e _) = errDupParams xs

++ go ?vEnv e

addsEnv :: Env -> [BareBind] -> Env

addsEnv env xs = foldr addEnv env xs

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

57 of 77 5/27/21, 9:22 AM

E

QUIZ How shall we implement ?vEnv ?

A. addsEnv vEnv []

B. addsEnv vEnv xs

C. addsEnv emptyEnv xs

Transforms: Compile
Question How does the called function know the values of free vars?

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

58 of 77 5/27/21, 9:22 AM

inEamxsey
App

l

RESTORE them from Clos STACK

Needs to restore them from closure tuple

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

59 of 77 5/27/21, 9:22 AM

Needs to access the closure tuple!

… But how shall we give the called function access to the tuple?

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

60 of 77 5/27/21, 9:22 AM

D

By passing the tuple as an extra parameter

Transforms: Compile
Calls App (as before)

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

61 of 77 5/27/21, 9:22 AM

1. Push closure-pointer + parameters

2. Call code-label

3. Pop closure-pointer + params

Definitions Lam

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

62 of 77 5/27/21, 9:22 AM

App e Ce e en

o eval e into RAX

P Maharanis
check
arm jumplabelend

Labelstart

cafefeaaa.de
herbody

resfe

7INuam e

fmii
ngec1engs.iabqstart.a

y yr
arity codepk

1. Compute free-vars x1 ,…, xn

2. Generate code-block

Restore free vars from closure-pointer-parameter New

Execute function body (as before)

3. Allocate tuple (arity, code-label, x1, ... , xn)

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

63 of 77 5/27/21, 9:22 AM

Tf

Transforms: Compile Definitions
1. Compute free-vars y1 ,…, yn

2. Generate code-block

Restore free vars from closure-pointer-parameter

Execute function body (as before)

3. Allocate tuple (arity, code-label, y1, ... , yn)

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

64 of 77 5/27/21, 9:22 AM

compileEnv :: Env -> AExp -> [Instruction]

compileEnv env (Lam xs e l)

= IJmp end -- Why?

: ILabel start -- Function start

: lambdaBody ys xs e -- Function code (like Decl)

++ ILabel end -- Function end

: lamTuple arity start env ys -- Compile closure-tuple into RA

X

where

 ys = freeVars (Lam xs e l)

 arity = length xs

 start = LamStart l

 end = LamEnd l

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

65 of 77 5/27/21, 9:22 AM

T dEalhyhtumggnsqyq.ms

TaiyodeFir

Creating Closure Tuples
To create the actual closure-tuple we need

the free-variables ys

the env from which to values of the free variables.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

66 of 77 5/27/21, 9:22 AM

lamTuple :: Int -> Label -> Env -> [Id] -> [Instruction]

lamTuple arity start env ys

= tupleAlloc (2 + length ys) -- alloc tuple 2

+ |ys|

++ tupleWrites (repr arity -- fill arity

: CodePtr start -- fill code-ptr

: [immArg env (Id y) | y <- ys]) -- fill free-vars

++ [IOr (Reg RAX) (typeTag TClosure)] -- set the tag bi

ts

Generating Code Block

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

67 of 77 5/27/21, 9:22 AM

badephr
stackin

lo
dosw

copy
free
from

A
settag

lambdaBody :: [Id] -> [Id] -> AExp -> [Instruction]

lambdaBody ys xs e =

 funEntry n -- 1. setup stack frame RBP/RSP

++ copyArgs xs' -- 2. copy parameters to stack slots

++ restore nXs ys -- 3. copy (closure) free vars to stack

slots

++ compileEnv env body -- 4. execute 'body' with result in RAX

++ funExit n -- 5. teardown stack frame & return

To restore ys we use the closure-ptr passed in at [RDI] – the special first

parameter – to copy the free-vars ys onto the stack.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

68 of 77 5/27/21, 9:22 AM

00
0
08 Is ys

nxslenxsn
feuygtlenxstcvarsesyenv.se

I El
Nats 2

T R foods
frees

params Ihnen
y r ntl
yzHnt2

C D 4mm ntm

ft RDI

restore :: Int -> [Id] -> [Instruction]

restore base ys =

concat [copy i | (_, i) <- zip ys [1..]]

where

 closV = Reg RDI

 copy i = tupleReadRaw closV (repr (i+1)) -- copy tuple-

fld for y into RAX...

++ [IMov (stackVar (base+i)) (Reg RAX)] -- ...write RA

X into stackVar for y

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

69 of 77 5/27/21, 9:22 AM

I 4,017,44 2

a

gYi lives
atelosreity

Yi livesat me onstak

arity codeptr Yuya Ys 7
closVCitD O L E I E

A Problem: Recursion
Oops, how do we write:

def fac(n):

if (n > 1):

 n * fac(n-1)

else:

1

fac(5)

If we try

let fac = (lambda (n):

if (n < 1):

1

else:

 n * fac(n-1))

in fac(5)

We get a variable unbound error!

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

70 of 77 5/27/21, 9:22 AM

in

Errors found!

tests/input/fac-bad.fdl:5:20-23: Unbound variable 'fac'

 5| n * fac(n-1))

We need to teach our compiler that its ok to use the name fac inside the body!

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

71 of 77 5/27/21, 9:22 AM

Solution: Named Functions
We have a new form of named functions which looks like this:

def fac(n):

if (n < 1):

1

else:

 n * fac(n - 1)

in

 fac(5)

Representing Named Functions
We extend Expr to handle such functions as:

data Expr a

= ...

| Fun (Bind a) -- ^ name of function

 [Bind a] -- ^ list of parameters

 (Expr a) a -- ^ body of function

Note that we parse the code

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

72 of 77 5/27/21, 9:22 AM

D
nameoffine

def foo(x1,...,xn):

 e

in

 e'

as the Expr

Let foo (Fun foo [x1,...,xn] e) e'

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

73 of 77 5/27/21, 9:22 AM

env foo Xi MD

FF
foo is allowed
toappear in e

Compiling Named Functions
Mostly, this is left as an exercise to you

Non-Recursive functions

i.e. f does not appear inside e in Fun f xs e

Treat Fun f xs e as Lam xs e …

… Everything should just work.

Recursive

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

74 of 77 5/27/21, 9:22 AM

i.e. f does appear inside e in Fun f xs e

Can you think of a simple tweak to the Lam strategy that works?

Recap: Functions as Values
We had functions, but they were second-class entities…

Now, they are first-class values

passed around as parameters

returned from functions

stored in tuples etc.

How?

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

75 of 77 5/27/21, 9:22 AM

1. Representation = Start-Label

Problem: How to do run-time checks of valid args?

2. Representation = (Arity, Start-Label)

Problem: How to map function names to tuples?

3. Lambda Terms Make functions just another expression!

Problem: How to store local variables?

4. Function Value (Arity, Start-Label, Free_1, ... , Free_N)

Ta Da!

Next: Adding garbage collection

Reclaim! Heap memory that is no longer in use

Next: Adding static type inference

Faster! Gets rid of those annoying (and slow!) run-time checks

Safer! Catches problems at compile-time, when easiest to fix!

(https://ucsd-cse131.github.io/sp21/feed.xml)

(https://twitter.com/ranjitjhala)

!"
!#

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

76 of 77 5/27/21, 9:22 AM

CamApp

EY
I CLOSURE

(https://plus.google.com/u/0/106612421534244742464)

(https://github.com/ucsd-cse131/sp21)

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll (http://jaspervdj.be/hakyll),

template by Armin Ronacher (http://lucumr.pocoo.org), Please suggest fixes here.

(http://github.com/ucsd-cse131/sp21)

!$
%!&

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/08-fer-de-lance.html

77 of 77 5/27/21, 9:22 AM

