csel31

num
Data on the Heap ~ bool
< char

Next, lets add support for Y Oub lo

F)ata Structures)

In the process of doing so, we will learn about

e Heap Allocation

¢ Run-time Tags

' Hidhorde Fone (Cloguve5>

Z envvy COAQ>

1 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

5/13/21,9:19 AM

csel31

2 of 54

Creating Heap Data Structures

We have already support for two primitive data types

data Ty
= TNumber -- e.g. 0,1,2,3,...
| TBoolean -- e.g. true, false

we could add several more of course, e.g.

e Char
e Double or Float

etc. (you should do it!)

However, for all of those, the same principle applies, more or less
¢ Aslong as the data fits into a single word (8-bytes)

Instead, lets learn how to make unbounded data structures

e Lists
e Trees

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

5/13/21,9:19 AM

csel31

3 of 54

which require us to put data on the heap

not just the stack that we’ve used so far.

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Low

Code

Global

Heap

Ctarl

5/13/21,9:19 AM

csel31

4 of 54

High

LA AN

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Stack vs. Heap

Pairs

While our goal is to get to lists and trees, the journey of a thousand miles begins with

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

a single step... \l/ LQC A’Q S(Qg'/' Vled(

So! we will begin with the humble pair. Q [’Dj \[/

(72,3, 2,0

3
kS
<

/
oug' = 7
[i) (2) 2>> O/'Af S(Dﬂ%e
elo] e[L] Q[bj

Pairs: Semantics (Behavior)

First, lets ponder what exactly we’re trying to achieve.
We want to enrich our language with two new constructs:

¢ Constructing pairs, with a new expression of the form| (e@, e1) where e0 and
el are expressions.

e Accessing pairs, with new expressions of the form e[0] and e[1] which

eld) erli]

5 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

evaluate to the first and second element of the tuple e respectively.

For example,

let t = (2, 3) in
t[0] + t[1]

should evaluateto 5.

Strategy

Next, lets informally develop a strategy for extending our language with pairs,

implementing the above semantics. We need to work out strategies for:

1. Representing pairs in the machine’s memory,

(QD, é,) A (45”0

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

el ——= casm)

2. Constructing pairs (i.e. implementing (e0, el) inassembly),

3. Accessing pairs (i.e. implementing e[0] and e[1] in assembly).

1. Representation

Recall that we represent all values: (05-cobra.md/#option-2-use-a-tag-bit)

e Number like 0, 1, 2 ... 64

et
e Boolean like true, false

—

as a siggle word either

¢ 8 bytes on the stack, or
—
e asingle register rax, rbx etc.

7 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

EXERCISE

What kinds of problems do you think might arise if we represent a pair@n the
stack as:

o é% f:@%)?’)) 4> in

(R
| 2 I -Z/-

! Lo (29,0 i?_
«tZ- (2) (Q’A)>

8 of 54 5/13/21,9:19 AM

csel31

9 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

€[o][o] y é[t?(((0):

M isNil OO

L) 9
, 13,4, S (LY p /mm
& £ idl):
cons (V, cons (2, cons (3, covus(tl nilo)))) (eCoJ 0] ﬁa:’;
(|) (Z) (%) Qb 1&’”))>> [delf(h&:s)(h/_t)
Qulz def ronge (Lo, hi):
How many words would we need to store the tuple)d l‘(- loc hi :))
[out ons(lo royellot) h
(3% (4% 5)) o ds;e;“\})
2. 2 words ’é é ‘l%, e
3. 3 words [wm(\ Cﬂ w (>
4. 4 words Y & /‘ﬁ /5/\(1((6)
[ty
/%&mdh (tal)

F (0,100)
Eup,—~ lewth ()

5/13/21,9:19 AM

csel31 \ https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

i e B

Pointers

Every problem in computing can be solved by adding a level of indirection.

We will represent a pair by a pointer to a block of two adjacent words of memory.

4—(4,5)

(O] P

10 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

\\ {4—1{2,(3,(4,5)))

Pairs on the heap

The above shows how the pair (2, (3, (4, 5))) and its sub-pairs can be stored in
the heap using pointers.

11 of 54 5/13/21,9:19 AM

csel31

(4, 5) isstored by adjacent words storing

e 4 and
e 5

(3, (4, 5)) isstored by adjacent words storing

e 3 and
¢ a pointer to a heap location storing (4, 5)

(2, (3, (4, 5))) isstored by adjacent words storing

e 2 and
¢ a pointer to a heap location storing (3, (4, 5)).

12 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

A Problem: Numbers vs. Pointers?

How will we tell the difference between numbers and pointers?
That is, how can we tell the difference between

1. the number 5 and
2. a pointer to a block of memory (with address 5)?

Each of the above corresponds to a different tuple

1. (4, 5) or
2. (4, (...)).

so its pretty crucial that we have a way of knowing which value it is.

13 of 54 5/13/21,9:19 AM

csel31

14 of 54

Tagging Pointers

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

As you might have guessed, we can extend our tagging mechanism (05-

cobra.md/#option-2-use-a-tag-bit) to accou inters.

Type LSB

number xx0
boolean 111

pointer 001

That is, for

oHEL J

(LY o
€ Qﬁl bihtes are

e number the last bit will be 0 (as before), g- b 3"8 a/[(\g\/lﬂ&

e boolean thelast 3 bits willbe 111 (as before), and

e pointer the last 3 bits will

(We have 3-bits worth for tags, so have wiggle room for other primitive types.)

5/13/21,9:19 AM

csel31

15 of 54

Address Alignment

As we have a 3 bit tag

e leaving 64 - 3 = 61 bits for the actual address

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

So actual addresses, written in binary, omitting trailing zeros, are of the form

Binary Decimal

0b00000000
0b00001000
0b00010000
0b00011000
0b00100000

That is, the addresses are 8-byte aligned.

0

8
16
24
32

Which is great because at each address, we have a pair, i.e. a 2-word = 16-byte block,

so the next allocated address will also fall on an 8-byte boundary.

A 5/13/21,9:19 AM

csel31 httpg¥/ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html
LT
e But ... what if we had 3-tuples? or 5-tuples? ...

AsM
(Ll) L 2) /Mot);Dr;:ré; SszeﬂrT

p N7 Ty Es
s W TT (rax+8) & Co
a/;:v?/ put et row L roxdi —

(i iesbi) W@\ —

fue = por ohep < smer 113

2. Construction

Next, lets look at how to implement pair construction that is, generate the assembly

for expressions like:
(e1, e2)

To construct a pair (el, e2) we

1. Allocate a new 2-word block, and getting the starting address at rax,
2. Copy the value of el (resp. e2)into [rax] (resp. [rax + 8]).

16 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

3. Tag the last bit of rax with 1.
The resulting eax is the value of the pair
¢ The last step ensures that the value carries the proper tag.

ANF will ensure that el and e2 are immediate expressions (04-boa.md/#idea-
immediate-expressions)

¢ will make the second step above straightforward.

EXERCISE How will we do ANF conversion for (el, e2)?

17 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Allocating Addresses

Lets use a global register r15 to maintain the address of the next free block on the
heap.

Every time we need a new block, we will:
1. Copy the current r15 into rax

e Set the last bitto 1 to ensure proper tagging.

e rax will be used to fill in the values
2. Increment the value of r15 by 16

e Thus allocating 8 bytes (= 2 words) at the address in rax
Note that addresses stay 8-byte aligned (last 3 bits = 0) if we

e Start our blocks at an 8-byte boundary, and
e Allocate 16 bytes at a time,

NOTE: Your assignment will have blocks of varying sizes

¢ You will have to maintain the 8-byte alignment by padding

18 of 54 5/13/21,9:19 AM

csel31

19 of 54

In the figure below, we have

Example: Allocation

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

quv

e asource program on the left,
¢ the ANF equivalent next to it.

Source

let p = (31 (4; 5))
y X =P -

ANF

let anf@ = (4, 5)

——

P = (3, anfo)
; x = plo]

, anfl = pl1]

3 =anf1(o}

5/13/21,9:19 AM

csel31

20 of 54

e 3

in

’

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Z = anf1[1]
X +Yy + z

Example of Pairs

The figure below shows the how the heap and r15 evolve at points 1, 2 and 3:

ANF
-
1et‘= (4, 5)
,’p_ = (3, anfo)
’x = plol
, anfl = p[1]
, Y = anfl1[0]
, Z = anf1[1]
in
X+Yy + 2z

1

2

3

ris
0+g ox8 0x8 4|
Oxn oxA | 15 0xA 5 7
~ al S |
06 0x6 3
r15 [
Ori ox1 | 7|

Allocating Pairs on the Heap

QUIZ

In the ANF version, p is the second (local) variable stored in the stack frame. What

value gets moved into the second stack slot when evaluating the above program?

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

1. Ox3 —7 3

2. (3, (4, 5)) —

3. 0x11 ——> [
4. OX9 — q
5. 0x10 — (G

—_—

: Asm

d . Th xeded
CZDJ (bx & obx-

(2% < ((bx+§4}
e[1]

3. Accessing

Finally, to access the elements of a pair
Lets compile e[0] to get the first or e[1] to get the second element

1. Check that immediate value e is a pointer
2.Load e into rbx
3. Remove the tag bit from rbx

21 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

4. Copy the value in [rbx] (resp. [rbx + 8])into rbx.

V}?OV yox <m¢1> (/QQJ'; bits = 0)

(15
—Sub o, ';L 0x0 58 OxIO -

Mov CaX, ?m\x +8.17% J flw
— %[g \w
a 7
Example: Access rox= 0t o
inct addy (%, &nfo)

Here is a snapshot of the heap after the pair(s) are allocated.

Source - ANF Heap y o
)
[olid oft [0
4 a %
let p = (3, (4, 5)) 1et (4, 5) .y © P Ox/l
, x = plo] w(p) 7= (3, anfo) Bl ox 57 ek |
.y = plil o] ;X = plel D
= pl1] [1] , anfl = p[1] 32
n) W(" print@) = anfl , 40
XY+ = =anfALy

22 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

AL A) < — dirr Ly

in

X +y + 2

Allocating Pairs on the Heap

Lets work out how the values corresponding to x, y and z in the example above get

stored on the stack frame in the course of evaluation.

Variable Hex Value Value
anfo 0x001 ptr 0

p 0x011 ptr 16

X 0x006 num 3

anf1 0x001 ptr 0

y 0x008 num 4

z Ox00A num 5

anf2 Ox00E num 7
result 0x018 num 12

23 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Plan (1, (2> 4)))

Pretty pictures are well and good, time to build stuff!

As usual, lets continue with our recipe:

LRun-time — < ??

2. Types
3. Transforms

We’ve already built up intuition of the strategy for implementing tuples. Next, lets
look at how to implement each of the above.

24 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Run-Time
We need to extend the run-time (c-bits/main.c) in two ways.

1. Allocate a chunk of space on the heap and pass in start address to our_code.

2. Print pairs properly.

Allocation

25 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

The first step is quite easy we can use calloc as follows:

int main(int argc, char** argv) {
int* HEAP = calloc(HEAP_SIZE, sizeof (int));

——
long result = our_code_starts_here

print(result); nt 1o O
return 0; (Nhere dres 'HEAP' live
} M Our- wde

The above code, (A) IS (13 >) rdi

1. Allocates a big block of contiguous memory (starting at HEAP), and
2. Passes this address in to our_code.

Now, our_code needs to, at the beginning start with ins7tructions that
&-lfle ?
e copy the parameter (in rdi) into global pointer (r15)
¢ and then bump it up at each allocation.

a[lOC

™~ «rtwl’ e

26 of 54 5/13/21,9:19 AM

csel31

27 of 54

\ (K¥ID _ilf—)\h \‘1—\ \Q
Printing fuple. = €0 |
bool = /

To print pairs, we must recursively traverse pointers
e until we hit number or boolean.

We can check if a value is a pair by looking at its last 3 bits:

int isPair(int p) {
return (p & 0x00000007) == 0x00000001;
}

We can use the above test to recursively print (word)-values:

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

5/13/21,9:19 AM

csel31

28 of 54

void print(long val) {

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

if(val & 0x1 == 0) { // val is a number

printf("%ld", val >> 1);

}

else if(val == CONST_TRUE) {
printf("true");

}

else if(val == CONST_FALSE) {
printf("false");

}

else if(val & 7 == 1) {
long* valp = (long *) (val - 1);
printf("(");
print(*valp);
printf(", ");
print(*(valp + 1));
printf(")");

}

else {

// val is true

// val is false

// extract address

// print first element

// print second element

printf("Unknown value: %#010x", val);

5/13/21,9:19 AM

csel31

29 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

e [e,]

Types

Next, lets move into our compiler, and see how the core types need to be extended.

Source (QU L) — s POl(f e‘ 62—
We need to extend the source Expr with support for tuples

el —> Gw;m e Tist

data Expr a
x | Pair (Expr a) (Expr a) a -- 2 construct a pair
| GetItem (Expr a) Fleld a -- 7 access a pair's element
=

7

In the above, Field is e/ [13 f Q’@(’”'M e SeM
)Tuﬂ‘e [@Las ~ 5/13/21,9:19 AM

csel31 . — httpg://ucsd-¢sg131.github.io/sp21/lectures/07-egg-eater.html
[a-eh tem C (s a)

data Field
= First -- 2 access first element of pair
| Second -- 7 access second element of pair

NOTE: Your assignment will generalize pairs to n-ary tuples using

e Tuple [Expr a] representing (el,...,en)
e GetItem (Expr a) (Expr a) representing el[e2]

Dynamic Types

Let us extend our dynamic types Ty see (05-cobra.md/#types) to include pairs:

30 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

data Ty = TNumber | TBoolean | TPair

Assembly

The assembly Instruction are changed minimally; we just need access to ri15
which will hold the value of the next available memory block:

data Register

| R15

31 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Transforms

Our code must take care of three things:

” nitialize r15 to allow heap allocation,

a onstruct pairs, com /,,‘/6 env Pa 14 / Tup le
a Access pairs. Compi LEnv &# Jkem

The latter two will be pointed out as cases in anf and compileEnv

e Tuple
e GetItem

ANE = Lile any

oy e, e;— ¥ Him2

5/13/21,9:19 AM

csel3l W l e e/g / https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html
<.

Initialize

We need to initialize r15 with the start position of the heap
e passed inas rdi by the run-time.

How shall we get a hold of this position?

To do so, our_code starts off with a prelude

Mtwn]
) -- copy param (HEAP) off rdi

prelude =
[IMov (Reg R15) (Reg RDI

P]
Is that it? .
mov i€, v

33 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Is ri15 8-byte aligned? 7\ —>

A.Yes

B.NO/(

34 of 54 5/13/21,9:19 AM

csel31

35 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Ensuring alignment 64 « o]
g alig =
prelude :: [Instruction]
prelude =
[IMov (Reg RAX) (HexConst OXFFFFFFFF) -- setup regMask

-

, IShl (Reg Iﬁ) SConst 32)
I0r (Reg RAX) (HexConst OxFFFFFFF8)
ORI

j\ YOAX =

, IMov (Reg R15) (Reg RDI) -- copy param (HEAP) of
f rdi

, IAdd (Reg R15) (Const 8) -- add 8 and mask 3 bit
s to ensure <—

, IAnd (Reg R15) (Reg RAX) -- 8-byte aligned

] <

1. Copy the value off the (parameter) stack, and
2. Adjust the value to ensure the value is 8-byte aligned.

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html
d c
mov i<, 1du

addl 1S, 8

ﬂ/f’dz HCJ OX '[Lji\/\) ?ﬁg

QUIZ b1 -biks

Why add 8 to r15 ? What would happen if we removed that operation?

A. r15 would not be 8-byte aligned?

ﬁ. r15 would point into the stack?

g. ri15 would not point into the heap?]_,
p r15 would not have enough space to write 2 bytes? ﬂ

P
S

36 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Construct

To construct a pair (v1, v2) we directly implement the above strategy (07-egg-

eater.md/#2-construction):
TwP'L Ve where N = /enzf‘ﬂl\— ve
compileEnv env (Tuple v1 v2
= pairAlloc WM) -- 1. allocate pair, resulting a
ddr in ‘rax’ - =

++ zawrCopy First (immArg env vl1) -- 2. copy first value into slot
."—k — S

++ pairCopy Second (immArg env v2) -- 3. copy second value into slo

t zZ

++ setTag RAX TPair\ -- 3. set the tag-bits of ‘rax’

Lets loomtum. QA' ZA,X) L
four Moc = ” Pm\(&’PLJ P‘A ma -

mov VoK, (IS mov rbx a9

add, i 16 mov Croasdf), v oX [N\Y“'oppj
Yot e | o - Bd0 P4 [ebp 2 —

add 1S, 3K

37 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Allocate

To allocate, we just copy the current pointer r15 and increment by 16 bytes,

e accounting for two 8-byte blocks for each element.

pairAlloc :: Asm

pairAlloc
= [IMov (Reg RAX) (Reg R15) -- copy current "free address" ‘esi
" into ‘eax’
, IAdd (Reg RAX) (Const 16) -- increment ‘esi’ by 8
]

Exercise How would you make this work for n -tuples?

Copy

38 of 54 5/13/21,9:19 AM

csel31

39 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

We copy an Arg intoa Field by
¢ saving the Arg into a helper register rbx,

e copying rbx into the field’s.slot.on the hean

~

pairCopy :: Field -> Arg -> Asm
pairCopy fld arg

= [IMov (Reg RBXS= arg
—> IMov (pairAddr fld) (Reg RBX)
]

- ——____

L

Recall, the field’s slot is either [rax] or [rax + 8] depending on whether the field

is First or Second. \’ \/
ouIZ V@ vV, T 2)

What shall we fill in for _1 and _2 ? - ' -2 3

0

pairAddr :: Field -> Arg

pairAddr First = Reg0ffset (MRAX ——

pairAddr Second = RegOffset"’ RAX
/ ; .
B. 0 and -1 QQ/SD@@ % EB‘P —_— Eea?"g*LJ

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

C. 1 and 2
D. -1 and -2

E. huh?

Tag
Finally, we set the tag bits of rax by using typeTag TPair which is defined

setTag :: Register -> Asm
setTag r = [IAdd (Reg r) (HexConst 0Ox1)]

40 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

e Ced e Dj

To access tuples, lets update compileEnv with the strategy above:

compileExpr env (GetItem e_fld)

= assertType env e TPair -- 1. check that e is a (pai
r) pointer

++ [IMov (Reg RAX) (immArg env e)] -- 2. load pointer into eax
++ unsetTag RAX -- 3. remove tag bit to get a
ddress

++ [IMov (Reg RAX) (pairAddr fld)] -- 4. copy value from resp. s

lot to eax f:

we remove the tag bits by doing the opposite of setTag namely:

unsetTag :: Register -> Asm
unsetTag r = ISub (Reg RAX) (HexConst 0x1)

41 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

N-ary Tuples
Thats it! Lets take our compiler out for a spin, by using it to write some interesting
programs!

First, lets see how to generalize pairs to allow for

e (00, (21,30

e quadruples (el,e2,e3,e4)

o pentuples (e1,e2,e3,e4,e5) (e() Cel) (‘63) @L‘) ’~>>\

and so on.

We just need a library of functions in our new egg language to

42 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

e Construct such tuples, and
e Access their fields.

Constructing Tuples
We can write a small set of functions to construct tuples (up to some given size):

def tup3(x1, x2, x3):
(x1, (x2, x3))

def tup4(x1, x2, x3, x4):
(x1, (x2, (x3, x4)))

def tup5(x1, x2, x3, x4, x5):
(x1, (x2, (x3, (x4, x5))))

43 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Accessing Tuples

We can write a single function to access tuples of any size.

So the below code

44 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

let yuple = (10, (20, (30, (40, (50, false))))) in

get(yuple, 0) = 10
get(yuple, 1) = 20
get(yuple, 2) = 30
get(yuple, 3) = 40
get(yuple, 4) = 50

def tup3(x1, x2, x3):
(x1, (x2, x3))

def tup5(x1, x2, x3, x4, x5):
(x1, (x2, (x3, (x4, x5))))

let t = tup5(1, 2, 3, 4, 5) in
, X0 = print(get(t, 0))
, X1 = print(get(t, 1))
, x2 = print(get(t, 2))
, X3 = print(get(t, 3))
, X4 = print(get(t, 4))
in

45 of 54 5/13/21,9:19 AM

csel31

99

should print out:

A W N R O

99
How shall we write it?

def get(t, 1i):
TODO-IN-CLASS

46 of 54

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

5/13/21,9:19 AM

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

csel31

QUIZ

Using the above “library” we can write code like:

let quad = tup4(1, 2, 3, 4) in
get(quad, 0) + get(quad, 1) + get(quad, 2) + get(quad, 3)

What will be the result of compiling the above?

1. Compile error
2. Segmentation fault
3. Other run-time error

4. 4
5. 10

5/13/21,9:19 AM

47 of 54

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

QUIZ

Using the above “library” we can write code like:

def get(t, i):
if 1 ==
t[o]
else:
get(t[1],1-1)

def tup3(x1, x2, x3):
(x1, (x2, (x3, false)))

let quad = tup3(1, 2, 3) in
get(quad, 0) + get(quad, 1) + get(quad, 2) + get(quad, 3)

What will be the result of compiling the above?

48 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

1. Compile error
2. Segmentation fault
3. Other run-time error

4. 4
5. 10

Lists

Once we have pairs, we can start encoding unbounded lists.

To build a list, we need two constructor functions:

49 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

def empty():
false

def cons(h, t):
(h, t)
We can now encode lists as:

*“python
cons(1, cons(2, cons(3, cons(4, empty()))))

Access

To access a list, we need to know

1. Whether the list i1sEmpty, and
2. Away to access the head and the tail of a non-empty list.

50 of 54 5/13/21,9:19 AM

csel31

def isEmpty(l):

1 == empty()

def head(l):
1[0]

def tail(l):
1[1]

Examples

https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

We can now write various functions that build and operate on lists, for example, a

function to generate the list of numbers between i and j

51 of 54

5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

def range(i, j):
if (1 < 3):
cons(i, range(i+1, j))
else:
empty()

range(1, 5)
which should produce the result
(1,(2,(3,(4,false))))

and a function to sum up the elements of a list:

def sum(xs):
if (isEmpty(xs)):
0
else:
head(xs) + sum(tail(xs))

sum(range(1, 5))

which should produce the result 10.

52 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

Recap

We have a pretty serious language now, with:
e Data Structures
which are implemented using

e Heap Allocation
¢ Run-time Tags

which required a bunch of small but subtle changes in the
e runtime and compiler

In your assignment, you will add native support for n-ary tuples, letting the
programmer write code like:

53 of 54 5/13/21,9:19 AM

csel31 https://ucsd-cse131.github.io/sp21/lectures/07-egg-eater.html

(el, e2, e3, ..., en) # constructing tuples of arbitrary arity

el[e2] # allowing expressions to be used as fields
Next, we’ll see how to

e use the “tuple” mechanism to implement higher-order functions and

¢ reclaim unused memory via garbage collection.

‘ (https://ucsd-cse131.github.io/sp21/feed.xml)
‘ (https://twitter.com/ranjitjhala)
‘ (https://plus.google.com/u/0/106612421534244742464)

‘ (https://github.com/ucsd-cse131/sp21)

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll (http://jaspervdj.be/hakyll),
template by Armin Ronacher (http://lucumr.pocoo.org), Please suggest fixes here.
(http://github.com/ucsd-cse131/sp21)

54 of 54

5/13/21,9:19 AM

