
Functions

Next, we’ll build diamondback which adds support for

User-Defined Functions

In the process of doing so, we will learn about

Static Checking

Calling Conventions

Tail Recursion

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

1 of 73 4/27/21, 9:12 AM

36 26 RsplRBP

01118664J

Gwhat TR
How Loop

Plan
1. Defining Functions

2. Checking Functions

3. Compiling Functions

4. Compiling Tail Calls

1. Defining Functions

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

2 of 73 4/27/21, 9:12 AM

Only loop

First, lets add functions to our language.

As always, lets look at some examples.

Example: Increment
For example, a function that increments its input:

def incr(x):

 x + 1

incr(10)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

3 of 73 4/27/21, 9:12 AM

name

param
bodylexpr

We have a function definition followed by a single “main” expression, which is

evaluated to yield the program’s result 11 .

Example: Factorial
Here’s a somewhat more interesting example:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

4 of 73 4/27/21, 9:12 AM

def fac(n):

 let t = print(n) in

if (n < 1):

1

else:

 n * fac(n - 1)

fac(5)

This program should produce the result

5

4

3

2

1

0

120

Suppose we modify the above to produce intermediate results:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

5 of 73 4/27/21, 9:12 AM

i

def fac(n):

 let t = print(n)

 , res = if (n < 1):

1

else:

 n * fac(n - 1)

in

print(res)

fac(5)

we should now get:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

6 of 73 4/27/21, 9:12 AM

deflasgntwrites g

f readsfuses 4
3
2

0

I l

z
6

24
120
120

5

4

3

2

1

0

1

1

2

6

24

120

120

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

7 of 73 4/27/21, 9:12 AM

Example: Mutually Recursive Functions
For this language, the function definitions are global

any function can call any other function.

This lets us write mutually recursive functions like:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

8 of 73 4/27/21, 9:12 AM

def even(n):

if (n == 0):

 true

else:

 odd(n - 1)

def odd(n):

if (n == 0):

 false

else:

 even(n - 1)

let t0 = print(even(0)),

 t1 = print(even(1)),

 t2 = print(even(2)),

 t3 = print(even(3))

in

0

QUIZ What should be the result of executing the above?

1. false true false true 0

2. true false true false 0

3. false false false false 0

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

9 of 73 4/27/21, 9:12 AM

4. true true true true 0

Types
Lets add some new types to represent programs.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

10 of 73 4/27/21, 9:12 AM

Expr a Bind a

data Tunea Func Bind Id a

ftp.rammsii BImndinaag

ft r r Expr a

Bindings
Lets create a special type that represents places where variables are bound,

data Bind a = Bind Id a

A Bind is an Id decorated with an a

to save extra metadata like tags or source positions

to make it easy to report errors.

We will use Bind at two places:

1. Let-bindings,

2. Function parameters.

It will be helpful to have a function to extract the Id corresponding to a Bind

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

11 of 73 4/27/21, 9:12 AM

g
f e p a

dataProg Pray Tunea Expire

bindId :: Bind a -> Id

bindId (Bind x _) = x

Programs
A program is a list of declarations and main expression.

data Program a = Prog

 { pDecls :: [Decl a] -- ^ function declarations

 , pBody :: !(Expr a) -- ^ "main" expression

 }

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

12 of 73 4/27/21, 9:12 AM

Declarations
Each function lives is its own declaration,

data Decl a = Decl

 { fName :: (Bind a) -- ^ name

 , fArgs :: [Bind a] -- ^ parameters

 , fBody :: (Expr a) -- ^ body expression

 , fLabel :: a -- ^ metadata/tag

 }

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

13 of 73 4/27/21, 9:12 AM

Expressions
Finally, lets add function application (calls) to the source expressions:

data Expr a

= ...

| Let (Bind a) (Expr a) (Expr a) a

| App Id [Expr a] a

An application or call comprises

an Id , the name of the function being called,

a list of expressions corresponding to the parameters, and

a metadata/tag value of type a .

(Note: that we are now using Bind instead of plain Id at a Let .)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

14 of 73 4/27/21, 9:12 AM

0000

Examples Revisited
Lets see how the examples above are represented:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

15 of 73 4/27/21, 9:12 AM

incr fae

>>> parseFile "tests/input/incr.diamond"

Prog {pDecls = [Decl { fName = Bind "incr" ()

 , fArgs = [Bind "n" ()]

 , fBody = Prim2 Plus (Id "n" ()) (Number 1 ())

()

 , fLabel = ()}

]

 , pBody = App "incr" [Number 5 ()] ()

 }

>>> parseFile "tests/input/fac.diamond"

Prog { pDecls = [Decl {fName = Bind "fac" ()

 , fArgs = [Bind "n" ()]

 , fBody = Let (Bind "t" ()) (Prim1 Print (Id "n" ())

())

 (If (Prim2 Less (Id "n" ()) (Number 1 ())

())

 (Number 1 ())

 (Prim2 Times (Id "n" ())

 (App "fac" [Prim2 Minus (Id "n" ())

(Number 1 ()) ()] ())

 ()) ()) ()

 , fLabel = ()}

]

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

16 of 73 4/27/21, 9:12 AM

 , pBody = App "fac" [Number 5 ()] ()

 }

2. Static Checking
Next, we will look at an increasingly important aspect of compilation, pointing out

bugs in the code at compile time

Called Static Checking because we do this without (i.e. before) compiling and running

the code.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

17 of 73 4/27/21, 9:12 AM

foo
bar
baz

There is a huge spectrum of checks possible:

Code Linting jslint (http://jshint.com/), hlint (https://hackage.haskell.org

/package/hlint)

Static Typing

Static Analysis

Contract Checking

Dependent or Refinement Typing (https://ucsd-progsys.github.io/liquidhaskell-

blog/)

Increasingly, this is the most important phase of a compiler, and modern compiler

engineering is built around making these checks lightning fast. For more, see this

interview of Anders Hejlsberg (https://www.infoq.com/news/2016/05/anders-

hejlsberg-compiler) the architect of the C# and TypeScript compilers.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

18 of 73 4/27/21, 9:12 AM

00S DAITO
20

µV

flanguageservERTI

Static Well-formedness Checking
We will look at code linting and, later in the quarter, type systems in 131.

For the former, suppose you tried to compile:

def fac(n):

 let t = print(n) in

if (n < 1):

1

else:

 n * fac(m - 1)

fact(5) + fac(3, 4)

We would like compilation to fail, not silently, but with useful messages:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

19 of 73 4/27/21, 9:12 AM

$ make tests/output/err-fac.result

Errors found!

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

 6| n * fac(m - 1)

 ^

tests/input/err-fac.diamond:8:1-9: Function 'fact' is not defined

 8| fact(5) + fac(3, 4)

 ^^^^^^^^

tests/input/err-fac.diamond:(8:11)-(9:1): Wrong arity of arguments at

call of fac

 8| fact(5) + fac(3, 4)

 ^^^^^^^^^

We get multiple errors:

1. The variable m is not defined,

2. The function fact is not defined,

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

20 of 73 4/27/21, 9:12 AM

3. The call fac has the wrong number of arguments.

Next, lets see how to update the architecture of our compiler to support these and

other kinds of errors.

Types: An Error Reporting API
An error message type:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

21 of 73 4/27/21, 9:12 AM

data UserError = Error

 { eMsg :: !Text -- ^ error message

 , eSpan :: !SourceSpan -- ^ source position

 }

deriving (Show, Typeable)

We make it an exception (that can be thrown):

instance Exception [UserError]

We can create errors with:

mkError :: Text -> SourceSpan -> Error

mkError msg l = Error msg l

We can throw errors with:

abort :: UserError -> a

abort e = throw [e]

We display errors with:

renderErrors :: [UserError] -> IO Text

which takes something like:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

22 of 73 4/27/21, 9:12 AM

D

Error

"Unbound variable 'm'"

 { file = "tests/input/err-fac"

 , startLine = 8

 , startCol = 1

 , endLine = 8

 , endCol = 9

 }

and produces a contextual message (that requires reading the source file),

tests/input/err-fac.diamond:6:13-14: Unbound variable 'm'

 6| n * fac(m - 1)

 ^

We can put it all together by

-- bin/Main.hs

main :: IO ()

main = runCompiler `catch` esHandle

esHandle :: [UserError] -> IO ()

esHandle es = renderErrors es >>= hPutStrLn stderr >> exitFailure

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

23 of 73 4/27/21, 9:12 AM

Which runs the compiler and if any UserError are thrown, catch -es and renders

the result.

Transforms
Next, lets insert a checker phase into our pipeline:

Compiler Pipeline with Checking Phase

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

24 of 73 4/27/21, 9:12 AM

In the above, we have defined the types:

type BareP = Program SourceSpan -- ^ source position metadat

a

type AnfP = Program SourceSpan -- ^ sub-exprs in ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ sub-exprs have unique t

ag

Catching Multiple Errors
Its rather irritating to get errors one-by-one.

To make using a language and compiler pleasant, lets return as many errors as possible

in each run.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

25 of 73 4/27/21, 9:12 AM

We will implement this by writing the functions

wellFormed :: BareProgram -> [UserError]

which will recursively traverse the entire program, declaration and expression and

return the list of all errors.

If this list is empty, we just return the source unchanged,

Otherwise, we throw the list of found errors (and exit.)

Thus, our check function looks like this:

check :: BareProgram -> BareProgram

check p = case wellFormed p of

 [] -> p

 es -> throw es

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

26 of 73 4/27/21, 9:12 AM

Well-formed Programs, Declarations and
Expressions
The bulk of the work is done by three functions

-- Check a whole program

wellFormed :: BareProgram -> [UserError]

-- Check a single declaration

wellFormedD :: FunEnv -> BareDecl -> [UserError]

-- Check a single expression

wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

27 of 73 4/27/21, 9:12 AM

pro't

PEW

RR
Et

Well-formed Programs
To check the whole program

wellFormed :: BareProgram -> [UserError]

wellFormed (Prog ds e)

= concat [wellFormedD fEnv d | d <- ds]

++ wellFormedE fEnv emptyEnv e

where

 fEnv = funEnv ds

funEnv :: [Decl] -> FunEnv

funEnv ds = fromListEnv [(bindId f, length xs)

| Decl f xs _ _ <- ds]

This function,

1. Creates FunEnv , a map from function-names to the function-arity (number of

params),

2. Computes the errors for each declaration (given functions in fEnv),

3. Concatenates the resulting lists of errors.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

28 of 73 4/27/21, 9:12 AM

QUIZ
Which function(s) would we have to modify to add large number errors (i.e. errors for

numeric literals that may cause overflow)?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

29 of 73 4/27/21, 9:12 AM

QUIZ
Which function(s) would we have to modify to add variable shadowing errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

30 of 73 4/27/21, 9:12 AM

let u 10

If 20

iii
dup
var

QUIZ
Which function(s) would we have to modify to add duplicate parameter errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

31 of 73 4/27/21, 9:12 AM

QUIZ
Which function(s) would we have to modify to add duplicate function errors ?

1. wellFormed :: BareProgram -> [UserError]

2. wellFormedD :: FunEnv -> BareDecl -> [UserError]

3. wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

4. 1 and 2

5. 2 and 3

Traversals

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

32 of 73 4/27/21, 9:12 AM

Diamond

Checking
Compile tunicates

Tail

MIDTERM 9 30 1050
on TUE
MAY 4

Lets look at how we might check for two types of errors:

1. “unbound variables”

2. “undefined functions”

(In your assignment, you will look for many more.)

The helper function wellFormedD creates an initial variable environment vEnv

containing the functions parameters, and uses that (and fEnv) to walk over the

body-expressions.

wellFormedD :: FunEnv -> BareDecl -> [UserError]

wellFormedD fEnv (Decl _ xs e _) = wellFormedE fEnv vEnv e

where

 vEnv = addsEnv xs emptyEnv

The helper function wellFormedE starts with the input

vEnv0 which has the function parameters, and

fEnv that has the defined functions,

and traverses the expression:

At each definition Let x e1 e2 , the variable x is added to the environment

used to check e2 ,

At each use Id x we check if x is in vEnv and if not, create a suitable

UserError

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

33 of 73 4/27/21, 9:12 AM

A Ok newpolicy

B old policy

mismatch

arity
gags

At each call App f es we check if f is in fEnv and if not, create a suitable

UserError .

wellFormedE :: FunEnv -> Env -> Bare -> [UserError]

wellFormedE fEnv vEnv0 e = go vEnv0 e

where

 gos vEnv es = concatMap (go vEnv) es

 go _ (Boolean {}) = []

 go _ (Number n l) = []

 go vEnv (Id x l) = unboundVarErrors vEnv x l

 go vEnv (Prim1 _ e _) = go vEnv e

 go vEnv (Prim2 _ e1 e2 _) = gos vEnv [e1, e2]

 go vEnv (If e1 e2 e3 _) = gos vEnv [e1, e2, e3]

 go vEnv (Let x e1 e2 _) = go vEnv e1

++ go (addEnv x vEnv) e2

 go vEnv (App f es l) = unboundFunErrors fEnv f l

++ gos vEnv es

You should understand the above and be able to easily add extra error checks.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

34 of 73 4/27/21, 9:12 AM

3. Compiling Functions

Compiler Pipeline for Functions

In the above, we have defined the types:

type BareP = Program SourceSpan -- ^ each sub-expression has

source position metadata

type AnfP = Program SourceSpan -- ^ each function body in A

NF

type AnfTagP = Program (SourceSpan, Tag) -- ^ each sub-expression has

unique tag

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

35 of 73 4/27/21, 9:12 AM

f Ces
T

Prime op
q

Tagging

Compiler Pipeline ANF

The tag phase simply recursively tags each function body and the main expression

ANF Conversion

Compiler Pipeline ANF

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

36 of 73 4/27/21, 9:12 AM

vn tbsri

The normalize phase (i.e. anf) is recursively applied to each function body.

In addition to Prim2 operands, each call’s arguments should be transformed

into an immediate expression (04-boa.md/#idea-immediate-expressions)

Generalize the strategy for binary operators (04-boa.md/#anf-implementation)

from (2 arguments) to n -arguments.

Strategy
Now, lets look at compiling function definitions and calls.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

37 of 73 4/27/21, 9:12 AM

CRUS

CALLS DEF
ourcodestart
passparams L
jumpto incr

defµy
n cleanupafter

jumpy
incress dpffpinaY.im saiu

Ntl

returntocaller

Compiler Pipeline with Checking Phase

We need a co-ordinated strategy for definitions and calls.

Function Definitions

Each definition is compiled into a labeled block of Asm

That implements the body of the definitions.

(But what about the parameters)?

Function Calls

Each call of f(args) will execute the block labeled f

(But what about the parameters)?

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

38 of 73 4/27/21, 9:12 AM

di Ce
da Ld
d3 de
e Ld37

Strategy: The Stack

Stack Frames

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

39 of 73 4/27/21, 9:12 AM

RBPERSP
Rsp RSP 8 n

Rasp
setup
Frame

RBPIRSPEE.in
gnr

EaEe gamrams

PARAMIT8
A

EXEC

f i
is

cleanup

L pops

RspRSPt8n
popRBP
return

We will use our old friend, the stack to

pass parameters

have local variables for called functions.

X86-64 Calling Convention
We are using the x86-64 calling convention (https://aaronbloomfield.github.io

/pdr/book/x86-64bit-ccc-chapter.pdf), that ensures the following stack layout:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

40 of 73 4/27/21, 9:12 AM

def fcxi.xz.is call
1 Is

Mov ri e

f 42,3
moviro eco
push e8
push et
call f
rspersptn.se

www

Stack Layout

Suppose we have a function foo defined as

def foo(x1,x2,...):

 e

When the function body starts executing

the first 6 parameters x1 , x2 , … x6 are at rdi , rsi , rdx , rcx , r8 and r9

the remaining x7 , x8 … are at [rbp + 8*2] , [rbp + 8*3] , …

When the function exits

the return value is in rax

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

41 of 73 4/27/21, 9:12 AM

RBPCi3 RBP 8INT
PAR 9 32

PARAM SRC DST

7 2 7

k V i i

Pesky detail on Stack Alignment
At both definition and call, you need to also respect the 16-Byte Stack Alignment

Invariant (https://en.wikipedia.org/wiki/X86_calling_conventions)

Ensure rsp is always a multiple of 16 .

i.e. pad to ensure an even number of arguments on stack

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

42 of 73 4/27/21, 9:12 AM

defineLns
ntl

1
S

incl5 t 100 LAD
LAD

Strategy: Definitions
Thus to compile each definition

def foo(x1,x2,...):

 body

we must

1. Setup Frame to allocate space for local variables by ensuring that rsp and rbp

are properly managed (../lectures/05-cobra.md/#managing-the-call-stack)

2. Copy parameters x1 , x2 ,… from the registers & stack

into stack-slots 1 , 2 ,… so we can access them in the body

3. Compile Body body with initial Env mapping parameters x1 => 1 , x2 => 2 ,

…

4. Teardown Frame to restore the caller’s rbp and rsp prior to ret urn.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

43 of 73 4/27/21, 9:12 AM

LAD

I calls

G 7

Xg08

t

Strategy: Calls
As before (../lectures/05-cobra.md/#in-the-caller) we must ensure that the

parameters actually live at the above address.

1. Push the parameter values into the registers & stack,

2. Call the appropriate function (using its label),

3. Pop the arguments o" the stack by incrementing rsp appropriately.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

44 of 73 4/27/21, 9:12 AM

def addcoby mor roti 277
mov rsi 28

Xty call def fun incr

efqfii.nl
resuiH mRAX

Types
We already have most of the machinery needed to compile calls.

Lets just add a new kind of Label for each user-defined function:

data Label

= ...

| DefFun Id

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

45 of 73 4/27/21, 9:12 AM

D I
defaddlocq.ge
X1tXzt

tXioiaddI01 2,3 10
def funadd10

D

Implementation
Lets can refactor our compile functions into:

-- Compile the whole program

compileProg :: AnfTagP -> Asm

-- Compile a single function declaration

compileDecl :: Bind -> [Bind] -> Expr -> Asm

-- Compile a single expression

compileExpr :: Env -> AnfTagE -> Asm

that respectively compile Program , Decl and Expr .

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

46 of 73 4/27/21, 9:12 AM

Compiling Programs
To compile a Program we compile

the main expression as Decl with no parameters and

each function declaration

compileProg (Prog ds e) =

 compileDecl (Bind "" ()) [] e

++ concat [compileDecl f xs e | (Decl f xs e _) <- ds]

QUIZ
Does it matter whether we put the code for e before ds ?

1. Yes

2. No

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

47 of 73 4/27/21, 9:12 AM

QUIZ
Does it matter what order we compile the ds ?

1. Yes

2. No

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

48 of 73 4/27/21, 9:12 AM

Compiling Declarations
To compile a single Decl we

1. Create a block starting with a label for the function’s name (so we know where to

call),

2. Invoke compileBody to fill in the assembly code for the body, using the initial

Env obtained from the function’s formal parameters.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

49 of 73 4/27/21, 9:12 AM

compileDecl :: Bind a -> [Bind a] -> AExp -> [Instruction]

compileDecl f xs body =

-- 0. Label for start of function

 [ILabel (DefFun (bindId f))]

-- 1. Setup stack frame RBP/RSP

++ funEntry n

-- label the 'body' for tail-calls

++ [ILabel (DefFunBody (bindId f))]

-- 2. Copy parameters into stack slots

++ copyArgs xs

-- 3. Execute 'body' with result in RAX

++ compileEnv initEnv body

-- 4. Teardown stack frame & return

++ funExit n

where

 n = countVars body

 initEnv = paramsEnv xs

Setup and Tear Down Stack Frame
(As in cobra)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

50 of 73 4/27/21, 9:12 AM

Setup frame

funEntry :: Int -> [Instruction]

funEntry n =

 [IPush (Reg RBP) -- save caller's RBP

 , IMov (Reg RBP) (Reg RSP) -- set callee's RBP

 , ISub (Reg RSP) (Const (argBytes n)) -- allocate n local-vars

]

Teardown frame

funExit :: Int -> [Instruction]

funExit n =

 [IAdd (Reg RSP) (Const (argBytes n)) -- un-allocate n local-va

rs

 , IPop (Reg RBP) -- restore callee's RBP

 , IRet -- return to caller

]

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

51 of 73 4/27/21, 9:12 AM

Copy Parameters into Frame
copyArgs xs returns the instructions needed to copy the parameter values

From the combination of rdi , rsi , …

To this function’s frame, rdi -> [rbp - 8] , rsi -> [rbp - 16] ,…

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

52 of 73 4/27/21, 9:12 AM

copyArgs :: [a] -> Asm

copyArgs xs = copyRegArgs rXs -- copy upto 6 register args

++ copyStackArgs sXs -- copy remaining stack args

where

 (rXs, sXs) = splitAt 6 xs

-- Copy upto 6 args from registers into offsets 1..

copyRegArgs :: [a] -> Asm

copyRegArgs xs = [IMov (stackVar i) (Reg r) | (_,r,i) <- zipWith3 xs

regs [1..]]

where regs = [RDI, RSI, RDX, RCX, R8, R9]

-- Copy remaining args from stack into offsets 7..

copyStackArgs :: [a] -> Asm

copyStackArgs xs = concat [copyArg src dst | (_,src,dst) <- zip3 xs

[-2,-3..] [7..]]

-- Copy from RBP-offset-src to RBP-offset-dst

copyArg :: Int -> Int -> Asm

copyArg src dst =

 [IMov (Reg RAX) (stackVar src)

 , IMov (stackVar dst) (Reg RAX)

]

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

53 of 73 4/27/21, 9:12 AM

Execute Function Body
(As in cobra)

compileEnv initEnv body generates the assembly for e using initEnv , the initial

Env created by paramsEnv

paramsEnv :: [Bind a] -> Env

paramsEnv xs = fromListEnv (zip xids [1..])

where

 xids = map bindId xs

paramsEnv xs returns an Env mapping each parameter to its stack position

(Recall that bindId extracts the Id from each Bind)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

54 of 73 4/27/21, 9:12 AM

Compiling Calls
Finally, lets extend code generation to account for calls:

compileEnv :: Env -> AnfTagE -> [Instruction]

compileEnv env (App f vs _) = call (DefFun f) [immArg env v | v <- v

s]

EXERCISE The hard work in compiling calls is done by:

call :: Label -> [Arg] -> [Instruction]

which implements the strategy for calls. Fill in the implementation of call yourself.

As an example, of its behavior, consider the (source) program:

def add2(x, y):

 x + y

add2(12, 7)

The call add2(12, 7) is represented as:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

55 of 73 4/27/21, 9:12 AM

App "add2" [Number 12, Number 7]

The code for the above call is generated by

call (DefFun "add2") [arg 12, arg 7]

where arg converts source values into assembly Arg (../lectures/05-cobra.md/a-

typeclass-for-representing-constants) which should generate the equivalent of the

assembly:

mov rdi 24

mov rsi 14

call label_def_add2

4. Compiling Tail Calls
Our language doesn’t have loops. While recursion is more general, it is more expensive

because it uses up stack space (and requires all the attendant management overhead).

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

56 of 73 4/27/21, 9:12 AM

For example (the python program):

def sumTo(n):

 r = 0

 i = n

while (0 <= i):

 r = r + i

 i = i - 1

return r

sumTo(10000)

Requires a single stack frame

Can be implemented with 2 registers

But, the “equivalent” diamond program

def sumTo(n):

if (n <= 0):

0

else:

 n + sumTo(n - 1)

sumTo(10000)

Requires 10000 stack frames …

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

57 of 73 4/27/21, 9:12 AM

One for fac(10000) , one for fac(9999) etc.

Tail Recursion
Fortunately, we can do much better.

A tail recursive function is one where the recursive call is the last operation done by

the function, i.e. where the value returned by the function is the same as the value

returned by the recursive call.

We can rewrite sumTo using a tail-recursive loop function:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

58 of 73 4/27/21, 9:12 AM

7

def loop(r, i):

if (0 <= i):

 let rr = r + i

 , ii = i - 1

in

 loop(rr, ii) # tail call

else:

 r

def sumTo(n):

 loop(0, n)

sumTo(10000)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

59 of 73 4/27/21, 9:12 AM

Visualizing Tail Calls
Lets compare the execution of the two versions of sumTo

Plain Recursion

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

60 of 73 4/27/21, 9:12 AM

sumTo(5)

==> 5 + sumTo(4)

^^^^^^^^

==> 5 + [4 + sumTo(3)]

^^^^^^^^

==> 5 + [4 + [3 + sumTo(2)]]

^^^^^^^^

==> 5 + [4 + [3 + [2 + sumTo(1)]]]

^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + sumTo(0)]]]]

^^^^^^^^

==> 5 + [4 + [3 + [2 + [1 + 0]]]]

^^^^^

==> 5 + [4 + [3 + [2 + 1]]]

^^^^^

==> 5 + [4 + [3 + 3]]

^^^^^

==> 5 + [4 + 6]

^^^^^

==> 5 + 10

^^^^^^

==> 15

Each call pushes a frame onto the call-stack;

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

61 of 73 4/27/21, 9:12 AM

The results are popped o! and added to the parameter at that frame.

Tail Recursion

sumTo(5)

==> loop(0, 5)

==> loop(5, 4)

==> loop(9, 3)

==> loop(12, 2)

==> loop(14, 1)

==> loop(15, 0)

==> 15

Accumulation happens in the parameter (not with the output),

Each call returns its result without further computation

No need to use call-stack, can make recursive call in place. * Tail recursive calls can

be compiled into loops!

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

62 of 73 4/27/21, 9:12 AM

Tail Recursion Strategy
Instead of using call to make the call, simply:

1. Copy the call’s arguments to the (same) stack position (as current args),

first six in rdi , rsi etc. and rest in [rbp+16] , [rbp+18] …

2. Jump to the start of the function

but after the bit where setup the stack frame (to not do it again!)

That is, here’s what a naive implementation would look like:

mov rdi, [rbp - 8] # push rr

mov rsi, [rbp - 16] # push ii

call def_loop

but a tail-recursive call can instead be compiled as:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

63 of 73 4/27/21, 9:12 AM

mov rdi, [rbp - 8] # push rr

mov rsi, [rbp - 16] # push ii

jmp def_loop_body

which has the e"ect of executing loop literally as if it were a while-loop!

Requirements
To implement the above strategy, we need a way to:

1. Identify tail calls in the source Expr (AST),

2. Compile the tail calls following the above strategy.

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

64 of 73 4/27/21, 9:12 AM

How toKNEW if callisTR
Howto COMPILE the Trail

rec
Addlabel replacefall jump

Types
We can do the above in a single step, i.e., we could identify the tail calls during the

code generation, but its cleaner to separate the steps into:

Labeling Expr with Tail Calls

In the above, we have defined the types:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

65 of 73 4/27/21, 9:12 AM

y
source

sq
and powwonide

do
what

isTR

Prag a Prog Ca BooD

type BareP = Program SourceSpan -- ^ each sub-exp

ression has source position metadata

type AnfP = Program SourceSpan -- ^ each functio

n body in ANF

type AnfTagP = Program (SourceSpan, Tag) -- ^ each sub-exp

ression has unique tag

type AnfTagTlP = Program ((SourceSpan, Tag), Bool) -- ^ each call is

marked as "tail" or not

Transforms
Thus, to implement tail-call optimization, we need to write two transforms:

1. To Label each call with True (if it is a tail call) or False otherwise:

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

66 of 73 4/27/21, 9:12 AM
fool bar baz

tails :: Program a -> Program (a, Bool)

2. To Compile tail calls, by extending compileEnv

Labeling Tail Calls

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

67 of 73 4/27/21, 9:12 AM

i

prog Deal wtf 1,223 notTI
Deal Eld Expr

Expr Number def f y z Can we turn
this into1 pdrme

op Expr
M

Au a JUMP
I Prim2Op

ExpatExpr

1,4 ftp.xEEEKEEFr dofgcaibl Ca YES
1 App Id

Exp't atb b NO

ref prim2
ninvof.IEnbinunaPngprim1

e

Which Calls are Tail Calls?

The Expr in non tail positions

Prim1

Prim2

Let (“bound expression”)

If (“condition”)

cannot contain tail calls; all those values have some further computation performed

on them.

However, the Expr in tail positions

If (“then” and “else” branch)

Let (“body”)

can contain tail calls (unless they appear under the first case)

Algorithm: Traverse Expr using a Bool

Initially True but

Toggled to False under non-tail positions,

Used as “tail-label” at each call.

NOTE: All non-calls get a default tail-label of False .

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

68 of 73 4/27/21, 9:12 AM

Oninvolve
minnow in funcall

tails :: Expr a -> Expr (a, Bool)

tails = go True -- initially

flag is True

where

 noTail l z = z (l, False)

 go _ (Number n l) = noTail l (Number n)

 go _ (Boolean b l) = noTail l (Boolean b)

 go _ (Id x l) = noTail l (Id x)

 go _ (Prim2 o e1 e2 l) = noTail l (Prim2 o e1' e2')

where

 [e1', e2'] = go False <$> [e1, e2] -- "prim-arg

s" is non-tail

 go b (If c e1 e2 l) = noTail l (If c' e1' e2')

where

 c' = go False c -- "cond" is

non-tail

 e1' = go b e1 -- "then" may

be tail

 e2' = go b e2 -- "else" may

be tail

 go b (Let x e1 e2 l) = noTail l (Let x e1' e2')

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

69 of 73 4/27/21, 9:12 AM

where

 e1' = go False e1 -- "bound-exp

r" is non-tail

 e2' = go b e2 -- "body-exp

r" may be tail

 go b (App f es l) = App f es' (l, b) -- tail-label

is current flag

where

 es' = go False <$> es -- "call arg

s" are non-tail

EXERCISE: How could we modify the above to only mark tail-recursive calls, i.e. to the

same function (whose declaration is being compiled?)

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

70 of 73 4/27/21, 9:12 AM

Compiling Tail Calls
Finally, to generate code, we need only add a special case to compileExpr

compileExpr :: Env -> AnfTagTlE -> [Instruction]

compileExpr env (App f vs l)

| isTail l = tailcall (DefFun f) [immArg env v | v <- vs]

| otherwise = call (DefFunBody f) [immArg env v | v <- vs]

That is, if the call is not labeled as a tail call, generate code as before. Otherwise, use

tailcall which implements our tail recursion strategy

tailcall :: Label -> [Arg] -> [Instruction]

tailcall l args

= copyRegArgs regArgs -- copy into RDI, RSI,...

++ copyTailStackArgs stkArgs -- copy into [RBP + 16], [RBP + 24]

...

++ [IJmp l] -- jump to start label

where

 (regArgs, stkArgs) = splitAt 6 args

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

71 of 73 4/27/21, 9:12 AM

steady

Recap
We just saw how to add support for first-class function

Definitions, and

Calls

and a way in which an important class of

Tail Recursive functions can be compiled as loops.

Later, we’ll see how to represent functions as values using closures.

(https://ucsd-cse131.github.io/sp21/feed.xml)

(https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/106612421534244742464)

!"
!#

!$

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

72 of 73 4/27/21, 9:12 AM

0

(https://github.com/ucsd-cse131/sp21)

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll (http://jaspervdj.be/hakyll),

template by Armin Ronacher (http://lucumr.pocoo.org), Please suggest fixes here.

(http://github.com/ucsd-cse131/sp21)

%!&

cse131 https://ucsd-cse131.github.io/sp21/lectures/06-diamond.html

73 of 73 4/27/21, 9:12 AM

