
4. Dynamic Checking
We’ve added support for Number and Boolean but we have no way to ensure that we

don’t write gibberish programs like:

2 + true

or

7 < false

In fact, lets try to see what happens with our code on the above:

ghci> exec "2 + true"

Oops.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

41 of 69 4/22/21, 9:02 AM

0

Static vs. Dynamic Type Checking
Later we will add a static type system

that rejects meaningless programs at compile time.

Now lets add a dynamic system

that aborts execution with wrong operands at run time.

Checking Tags at Run-Time
Here are the allowed types of operands for each primitive operation.

Operation Op-1 Op-2

+ int int

- int int

* int int

< int int

> int int

&& bool bool

|| bool bool

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

42 of 69 4/22/21, 9:02 AM

boot

if end

Operation Op-1 Op-2

! bool

if bool

= int or bool int or bool

Strategy: Asserting a Type
To check if arg is a number

Su#ces to check that the LSB is 0

If not, jump to special error_non_int label

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

43 of 69 4/22/21, 9:02 AM

For example

mov rax, arg

mov rbx, rax ; copy into rbx register

and rbx, 0x00000001 ; extract lsb

cmp rbx, 0 ; check if lsb equals 0

jne error_non_number

...

at error_non_number we can call into a C function:

error_non_number:

 mov rdi, 0 ; pass error code

 mov rsi, rax ; pass erroneous value

 call error ; call run-time "error" function

Finally, the error function is part of the run-time and looks like:

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

44 of 69 4/22/21, 9:02 AM

tag
TI
T

tag o int

as param I toy 1 boo

I param 2

rdi
rsi
rdx
rox
r8
r9

void error(long code, long v){

if (code == 0) {

 fprintf(stderr, "Error: expected a number but got %#010x\n", v);

 }

else if (code == 1) {

// print out message for errorcode 1 ...

 }

else if (code == 2) {

// print out message for errorcode 2 ...

 } ...

 exit(1);

 }

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

45 of 69 4/22/21, 9:02 AM

Strategy By Example
Lets implement the above in a simple file tests/output/int-check.s

section .text

extern error

extern print

global our_code_starts_here

our_code_starts_here:

mov rax, 1 ; not a valid number

mov rbx, rax ; copy into rbx register

and rbx, 0x00000001 ; extract lsb

cmp rbx, 0 ; check if lsb equals 0

jne error_non_number

error_non_number:

mov rdi, 0

mov rsi, rax

call error

Alas

make tests/output/int-check.result

... segmentation fault ...

What happened ?

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

46 of 69 4/22/21, 9:02 AM

Managing the Call Stack
To properly call into C functions (like error), we must play by the rules of the C

calling convention (https://aaronbloomfield.github.io/pdr/book/x86-64bit-ccc-

chapter.pdf)

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

47 of 69 4/22/21, 9:02 AM

p 8N

p

if

Stack Layout

1. The local variables of an (executing) function are saved in its stack frame.

2. The start of the stack frame is saved in register rbp ,

3. The start of the next frame is saved in register rsp .

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

48 of 69 4/22/21, 9:02 AM

I

Calling Convention
We must preserve the above invariant as follows:

In the Callee
At the start of the function

push rbp ; SAVE (previous) caller's base-pointer on stack

mov rbp, rsp ; set our base-pointer using the current stack-poin

ter

sub rsp, 8*N ; ALLOCATE space for N local variables

At the end of the function

add rsp, 8*N0 ; FREE space for N local variables

pop rbp ; RESTORE caller's base-pointer from stack

ret ; return to caller

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

49 of 69 4/22/21, 9:02 AM

Fixed Strategy By Example
Lets implement the above in a simple file tests/output/int-check.s

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

50 of 69 4/22/21, 9:02 AM

section .text

extern error

extern print

global our_code_starts_here

our_code_starts_here:

push rbp ; save caller's base-pointer

mov rbp, rsp ; set our base-pointer

sub rsp, 1600 ; alloc '100' vars

mov rax, 1 ; not a valid number

mov rbx, rax ; copy into rbx register

and rbx, 0x00000001 ; extract lsb

cmp rbx, 0 ; check if lsb equals 0

jne error_non_number

add rsp, 1600 ; de-alloc '100' vars

pop rbp ; restore caller's base-pointer

ret

error_non_number:

mov rdi, 0

mov rsi, rax

call error

Aha, now the above works!

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

51 of 69 4/22/21, 9:02 AM

make tests/output/int-check.result

... expected number but got ...

Q: What NEW thing does our compiler need to compute?

Hint: Why do we sub esp, 1600 above?

Types
Lets implement the above strategy.

To do so, we need a new data type for run-time types:

data Ty = TNumber | TBoolean

a new Label for the error

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

52 of 69 4/22/21, 9:02 AM

Error_non

Maskioystu

stacksetupHeardown

data Label

= ...

| TypeError Ty -- Type Error Labels

| Builtin Text -- Functions implemented in C

and thats it.

Transforms
The compiler must generate code to:

1. Perform dynamic type checks,

2. Exit by calling error if a failure occurs,

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

53 of 69 4/22/21, 9:02 AM

checkType V Int
V t Va checkType vz Int

tumor RAX Cv

add RAX vz

3. Manage the stack per the convention above.

1. Type Assertions
The key step in the implementation is to write a function

assertType :: Env -> IExp -> Ty -> [Instruction]

assertType env v ty

= [IMov (Reg RAX) (immArg env v)

 , IMov (Reg RBX) (Reg RAX)

 , IAnd (Reg RBX) (HexConst 0x00000001)

 , ICmp (Reg RBX) (typeTag ty)

 , IJne (TypeError ty)

]

where typeTag is:

typeTag :: Ty -> Arg

typeTag TNumber = HexConst 0x00000000

typeTag TBoolean = HexConst 0x00000001

You can now splice assertType prior to doing the actual computations, e.g.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

54 of 69 4/22/21, 9:02 AM

compilePrim2 :: Env -> Prim2 -> ImmE -> ImmE -> [Instruction]

compilePrim2 env Plus v1 v2 = assertType env v1 TNumber

++ assertType env v2 TNumber

++ [IMov (Reg RAX) (immArg env v1)

 , IAdd (Reg RAX) (immArg env v2)

]

2. Errors
We must also add code at the TypeError TNumber and TypeError TBoolean labels.

errorHandler :: Ty -> Asm

errorHandler t =

 [ILabel (TypeError t) -- the expected-number error

 , IMov (Reg RDI) (ecode t) -- set the first "code" param,

 , IMov (Reg RSI) (Reg RAX) -- set the second "value" param fir

st,

 , ICall (Builtin "error") -- call the run-time's "error" func

tion.

]

ecode :: Ty -> Arg

ecode TNumber = Const 0

ecode TBoolean = Const 1

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

55 of 69 4/22/21, 9:02 AM

3. Stack Management
Maintaining rsp and rbp

We need to make sure that all our code respects the C calling convention..

To do so, just wrap the generated code, with instructions to save and restore rbp and

rsp

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

56 of 69 4/22/21, 9:02 AM

compileBody :: AnfTagE -> Asm

compileBody e = entryCode e

++ compileEnv emptyEnv e

++ exitCode e

entryCode :: AnfTagE -> Asm

entryCode e = [IPush (Reg RBP) -- SAVE caller'

s RBP

 , IMov (Reg RBP) (Reg RSP) -- SET our RBP

 , ISub (Reg RSP) (Const (argBytes n)) -- ALLOC n loca

l-vars

]

where

 n = countVars e

exitCode :: AnfTagE -> Asm

exitCode e = [IAdd (Reg RSP) (Const (argBytes n)) -- FREE n loc

al-vars

 , IPop (Reg RBP) -- RESTORE ca

ller's RBP

 , IRet -- RETURN to

caller

]

where

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

57 of 69 4/22/21, 9:02 AM

 n = countVars e

the rsp needs to be a multiple of 16 so:

argBytes :: Int -> Int

argBytes n = 8 * n'

where

 n' = if even n then n else n + 1

Q: But how shall we compute countVars ?

Here’s a shady kludge:

countVars :: AnfTagE -> Int

countVars = 100

Obviously a sleazy hack (why?), but lets use it to test everything else; then we can fix it.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

58 of 69 4/22/21, 9:02 AM

4. Computing the Size of the Stack
Ok, now that everything (else) seems to work, lets work out:

countVars :: AnfTagE -> Int

Finding the exact answer is undecidable in general (CSE 105), i.e. is impossible to

compute.

However, it is easy to find an overapproximate heuristic, i.e.

a value guaranteed to be larger than the than the max size,

and which is reasonable in practice.

As usual, lets see if we can work out a heuristic by example.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

59 of 69 4/22/21, 9:02 AM

QUIZ
How many stack slots/vars are needed for the following program?

1 + 2

A. 0

B. 1

C. 2

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

60 of 69 4/22/21, 9:02 AM

O_O

QUIZ
How many stack slots/vars are needed for the following program?

let x = 1

 , y = 2

 , z = 3

in

 x + y + z

A. 0

B. 1

C. 2

D. 3

E. 4

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

61 of 69 4/22/21, 9:02 AM

tarty

F

r

QUIZ
How many stack slots/vars are needed for the following program?

if true:

let x = 1

 , y = 2

 , z = 3

in

 x + y + z

else:

0

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

62 of 69 4/22/21, 9:02 AM

IF 4 Ec ez
ez

falseMa
ESP

t xty
ocoat

Esp

A. 0

B. 1

C. 2

D. 3

E. 4

QUIZ
How many stack slots/vars are needed for the following program?

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

63 of 69 4/22/21, 9:02 AM

let x =

let y =

let z = 3

in z + 1

in y + 1

in x + 1

A. 0

B. 1

C. 2

D. 3

E. 4

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

64 of 69 4/22/21, 9:02 AM

CT

Lf
I 2 3

O

O
go.co Max

let a e
Carsten
vars led

in

ez
too

Strategy
Let countVars e be:

The maximum number of let-binds in scope at any point inside e , i.e.

The maximum size of the Env when compiling e

Lets work it out on a case-by-case basis:

Immediate values like Number or Var

are compiled without pushing anything onto the Env

i.e. countVars = 0

Binary Operations like Prim2 o v1 v2 take immediate values,

are compiled without pushing anything onto the Env

i.e. countVars = 0

Branches like If v e1 e2 can go either way

can’t tell at compile-time

i.e. worst-case is larger of countVars e1 and countVars e2

Let-bindings like Let x e1 e2 require

evaluating e1 and

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

65 of 69 4/22/21, 9:02 AM

pushing the result onto the stack and then evaluating e2

i.e. larger of countVars e1 and 1 + countVars e2

Implementation
We can implement the above a simple recursive function:

countVars :: AnfTagE -> Int

countVars (If v e1 e2) = max (countVars e1) (countVars e2)

countVars (Let x e1 e2) = max (countVars e1) (1 + countVars e2)

countVars _ = 0

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

66 of 69 4/22/21, 9:02 AM

Naive Heuristic is Naive
The above method is quite simplistic. For example, consider the expression:

let x = 1

 , y = 2

 , z = 3

in

0

countVars would tell us that we need to allocate 3 stack spaces but clearly none of

the variables are actually used.

Will revisit this problem later, when looking at optimizations.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

67 of 69 4/22/21, 9:02 AM

Recap
We just saw how to add support for

Multiple datatypes (number and boolean)

Calling external functions

and in doing so, learned about

Tagged Representations

Calling Conventions

To get some practice, in your assignment, you will add:

1. Dynamic Checks for Arithmetic Overflows (see the jo and jno operations)

2. A Primitive print operation implemented by a function in the c run-time.

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

68 of 69 4/22/21, 9:02 AM

And next, we’ll see how to add user-defined functions.

(https://ucsd-cse131.github.io/sp21/feed.xml)

(https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/106612421534244742464)

(https://github.com/ucsd-cse131/sp21)

Copyright © Ranjit Jhala 2016-21. Generated by Hakyll (http://jaspervdj.be/hakyll),

template by Armin Ronacher (http://lucumr.pocoo.org), Please suggest fixes here.

(http://github.com/ucsd-cse131/sp21)

!"
!#

!$
%!&

cse131 file:///Users/rjhala/teaching/131-sp21/docs/lectures/05-cobra.html

69 of 69 4/22/21, 9:02 AM

